Total reflection X-ray fluorescence analysis and related methods /

Saved in:
Bibliographic Details
Author / Creator:Klockenkämper, Reinhold, 1937- author.
Edition:Second edition.
Imprint:Hoboken, New Jersey : Wiley, [2015]
©2015
Description:xxvi, 519 pages, 8 pages of plates : illustrations (some color) ; 25 cm.
Language:English
Series:Chemical analysis ; volume 181
Chemical analysis ; v. 181.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10156744
Hidden Bibliographic Details
Other authors / contributors:Bohlen, Alex von, 1954- author.
ISBN:9781118460276
1118460278
Notes:Previous edition: 1997.
Includes bibliographical references and index.
Summary:Explores the uses of TXRF in micro- and trace analysis, and in surface- and near-surface-layer analysis Pinpoints new applications of TRXF in different fields of biology, biomonitoring, material and life sciences, medicine, toxicology, forensics, art history, and archaeometry Updated and detailed sections on sample preparation taking into account nano- and picoliter techniques Offers helpful tips on performing analyses, including sample preparations, and spectra recording and interpretation Includes some 700 references for further study -- Provided by publisher.
Table of Contents:
  • Foreword
  • Acknowledgments
  • List of Acronyms
  • List of Physical Units and Subunits
  • List of Symbols
  • Chapter 1. Fundamentals of X-Ray Fluorescence
  • 1.1. A Short History of XRF
  • 1.2. The New Variant TXRF
  • 1.2.1. Retrospect on its Development
  • 1.2.2. Relationship of XRF and TXRF
  • 1.3. Nature and Production of X-Rays
  • 1.3.1. The Nature of X-Rays
  • 1.3.2. X-Ray Tubes as X Ray Sources
  • 1.3.2.1. The Line Spectrum
  • 1.3.2.2. The Continuous Spectrum
  • 1.3.3. Polarization of X-Rays
  • 1.3.4. Synchrotron Radiation as X-Ray Source
  • 1.3.4.1. Electrons in Fields of Bending Magnets
  • 1.3.4.2. Radiation Power of a Single Electron
  • 1.3.4.3. Angular and Spectral Distribution of SR
  • 1.3.4.4. Comparison with Black-Body Radiation
  • 1.4. Attenuation of X-Rays
  • 1.4.1. Photoelectric Absorption
  • 1.4.2. X-Ray Scatter
  • 1.4.3. Total Attenuation
  • 1.5. Deflection of X-Rays
  • 1.5.1. Reflection and Refraction
  • 1.5.2. Diffraction and Bragg's Law
  • 1.5.3. Total External Reflection
  • 1.5.3.1. Reflectivity
  • 1.5.3.2. Penetration Depth
  • 1.5.4. Refraction and Dispersion
  • References
  • Chapter 2. Principles of Total Reflection XRF
  • 2.1. Interference of X-Rays
  • 2.1.1. Double-Beam Interference
  • 2.1.2. Multiple-Beam Interference
  • 2.2. X-Ray Standing Wave Fields
  • 2.2.1. Standing Waves in Front of a Thick Substrate
  • 2.2.2. Standing Wave Fields Within a Thin Layer
  • 2.2.3. Standing Waves Within a Multilayer or Crystal
  • 2.3. Intensity of Fluorescence Signals
  • 2.3.1. Infinitely Thick and Flat Substrates
  • 2.3.2. Granular Residues on a Substrate
  • 2.3.3. Buried Layers in a Substrate
  • 2.3.4. Reflecting Layers on Substrates
  • 2.3.5. Periodic Multilayers and Crystals
  • 2.4. Formalism For Intensity Calculations
  • 2.4.1. A Thick and Flat Substrate
  • 2.4.2. A Thin Homogeneous Layer on a Substrate
  • 2.4.3. A Stratified Medium of Several Layers
  • References
  • Chapter 3. Instrumentation for TXRF and GI-XRF
  • 3.1. Basic Instrumental Setup
  • 3.2. High and Low-Power X-Ray Sources
  • 3.2.1. Fine-Focus X-Ray Tubes
  • 3.2.2. Rotating Anode Tubes
  • 3.2.3. Air-Cooled X-Ray Tubes
  • 3.3. Synchrotron Facilities
  • 3.3.1. Basic Setup with Bending Magnets
  • 3.3.2. Undulators, Wigglers, and FELs
  • 3.3.3. Facilities Worldwide
  • 3.4. The Beam Adapting Unit
  • 3.4.1. Low-Pass Filters
  • 3.4.2. Simple Monochromators
  • 3.4.3. Double-Crystal Monochromators
  • 3.5. Sample Positioning
  • 3.5.1. Sample Carriers
  • 3.5.2. Fixed Angle Adjustment for TXRF ("Angle Cut")
  • 3.5.3. Stepwise-Angle Variation for GI-XRF ("Angle Scan")
  • 3.6. Energy-Dispersive Detection of X-Rays
  • 3.6.1. The Semiconductor Detector
  • 3.6.2. The Silicon Drift Detector
  • 3.6.3. Position Sensitive Detectors
  • 3.7. Wavelength-Dispersive Detection of X-Rays
  • 3.7.1. Dispersing Crystals with Soller Collimators
  • 3.7.2. Gas-Filled Detectors
  • 3.7.3. Scintillation Detectors
  • 3.8. Spectra Registration and Evaluation
  • 3.8.1. The Registration Unit
  • 3.8.2. Performance Characteristics
  • 3.8.2.1. Detector Efficiency
  • 3.8.2.2. Spectral Resolution
  • 3.8.2.3. Input-Output Yield
  • 3.8.2.4. The Escape-Peak Phenomenon
  • References
  • Chapter 4. Performance of TXRF and GI-XRF Analyses
  • 4.1. Preparations for Measurement
  • 4.1.1. Cleaning Procedures
  • 4.1.2. Preparation of Samples
  • 4.1.3. Presentation of a Specimen
  • 4.1.3.1. Microliter Sampling by Pipettes
  • 4.1.3.2. Nanoliter Droplets by Capillaries
  • 4.1.3.3. Picoliter-Sized Droplets by Inkjet Printing
  • 4.1.3.4. Microdispensing of Liquids by Triple-Jet Technology
  • 4.1.3.5. Solid Matter of Different Kinds
  • 4.2. Acquisition of Spectra
  • 4.2.1. The Setup for Excitation with X-Ray Tubes
  • 4.2.2. Excitation by Synchrotron Radiation
  • 4.2.3. Recording the Spectrograms
  • 4.2.3.1. Energy-Dispersive Variant
  • 4.2.3.2. Wavelength-Dispersive Mode
  • 4.3. Qualitative Analysis
  • 4.3.1. Shortcomings of Spectra
  • 4.3.1.1. Strong Spectral Interferences
  • 4.3.1.2. Regard of Sum Peaks
  • 4.3.1.3. Dealing with Escape Peaks
  • 4.3.2. Unambiguous Element Detection
  • 4.3.3. Fingerprint Analysis
  • 4.4. Quantitative Micro- and Trace Analyses
  • 4.4.1. Prerequisites for Quantification
  • 4.4.1.1. Determination of Net Intensities
  • 4.4.1.2. Determination of Relative Sensitivities
  • 4.4.2. Quantification by Internal Standardization
  • 4.4.2.1. Standard Addition for a Single Element
  • 4.4.2.2. Multielement Determinations
  • 4.4.3. Conditions and Limitations
  • 4.4.3.1. Mass and Thickness of Thin Layers
  • 4.4.3.2. Residues of Microliter Droplets
  • 4.4.3.3. Coherence Length of Radiation
  • 4.5. Quantitative Surface and Thin-Layer Analyses by TXRF
  • 4.5.1. Distinguishing Between Types of Contamination
  • 4.5.1.1. Bulk-Type Impurities
  • 4.5.1.2. Particulate Contamination
  • 4.5.1.3. Thin-Layer Covering
  • 4.5.1.4. Mixture of Contaminations
  • 4.5.2. Characterization of Thin Layers by TXRF
  • 4.5.2.1. Multifold Repeated Chemical Etching
  • 4.5.2.2. Stepwise Repeated Planar Sputter Etching
  • 4.6. Quantitative Surface and Thin-Layer Analyses by GI-XRF
  • 4.6.1. Recording Angle-Dependent Intensity Profiles
  • 4.6.2. Considering the Footprint Effect
  • 4.6.3. Regarding the Coherence Length
  • 4.6.4. Depth Profiling at Grazing Incidence
  • 4.6.5. Including the Surface Roughness
  • References
  • Chapter 5. Different Fields of Applications
  • 5.1. Environmental and Geological Applications
  • 5.1.1. Natural Water Samples
  • 5.1.2. Airborne Particulates
  • 5.1.3. Biomonitoring
  • 5.1.4. Geological Samples
  • 5.2. Biological and Biochemical Applications
  • 5.2.1. Beverages: Water, Tea, Coffee, Must, and Wine
  • 5.2.2. Vegetable and Essential Oils
  • 5.2.3. Plant Materials and Extracts
  • 5.2.4. Unicellular Organisms and Biomolecules
  • 5.3. Medical, Clinical, and Pharmaceutical Applications
  • 5.3.1. Blood, Plasma, and Serum
  • 5.3.2. Urine, Cerebrospinal, and Amniotic Fluid
  • 5.3.3. Tissue Samples
  • 5.3.3.1. Freeze-Cutting of Organs by a Microtome
  • 5.3.3.2. Healthy and Cancerous Tissue Samples
  • 5.3.4. Medicines and Remedies
  • 5.4. Industrial or Chemical Applications
  • 5.4.1. Ultrapure Reagents
  • 5.4.2. High-Purity Silicon and Silica
  • 5.4.3. Ultrapure Aluminum
  • 5.4.4. High-Purity Ceramic Powders
  • 5.4.5. Impurities in Nuclear Materials
  • 5.4.6. Hydrocarbons and Their Polymers
  • 5.4.7. Contamination-Free Wafer Surfaces
  • 5.4.7.1. Wafers Controlled by Direct TXRF
  • 5.4.7.2. Contaminations Determined by VPD-TXRF
  • 5.4.8. Characterization of Nanostructured Samples
  • 5.4.8.1. Shallow Layers by Sputter Etching and TXRF
  • 5.4.8.2. Thin-Layer Structures by Direct GT-XRF
  • 5.4.8.3. Nanoparticles by TXRF and GI-XRF
  • 5.5. Art Historical and Forensic Applications
  • 5.5.1. Pigments, Inks, and Varnishes
  • 5.5.2. Metals and Alloys
  • 5.5.3. Textile Fibers and Glass Splinters
  • 5.5.4. Drug Abuse and Poisoning
  • References
  • Chapter 6. Efficiency and Evaluation
  • 6.1. Analytical Considerations
  • 6.1.1. General Costs of Installation and Upkeep
  • 6.1.2. Detection Power for Elements
  • 6.1.3. Reliability of Determinations
  • 6.1.4. The Great Variety of Suitable Samples
  • 6.1.5. Round-Robin Tests
  • 6.2. Utility and Competitiveness of TXRF and GI-XRF
  • 6.2.1. Advantages and Limitations
  • 6.2.2. Comparison of TXRF with Competitors
  • 6.2.3. GI-XRF and Competing Methods
  • 6.3. Perception and Propagation of TXRF Methods
  • 6.3.1. Commercially Available Instruments
  • 6.3.2. Support by the International Atomic Energy Agency
  • 6.3.3. Worldwide Distribution of TXRF and Related Methods
  • 6.3.4. Standardization by ISO and DIN
  • 6.3.5. International Cooperation and Activity
  • References
  • Chapter 7. Trends and Future Prospects
  • 7.1. Instrumental Developments
  • 7.1.1. Excitation by Synchrotron Radiation
  • 7.1.2. New Variants of X-Ray Sources
  • 7.1.3. Capillaries and Waveguides for Beam Adapting
  • 7.1.4. New Types of X-Ray Detectors
  • 7.2. Methodical Developments
  • 7.2.1. Detection of Light Elements
  • 7.2.2. Ablation and Deposition Techniques
  • 7.2.3. Grazing Exit X-Ray Fluorescence
  • 7.2.4. Reference-Free Quantification
  • 7.2.5. Time-Resolved In Situ Analysis
  • 7.3. Future Prospects by Combinations
  • 7.3.1. Combination with X-Ray Reflectometry
  • 7.3.2. EXAFS and Total Reflection Geometry
  • 7.3.3. Combination with XANES or NEXAFS
  • 7.3.4. X-Ray Diffractometry at Total Reflection
  • 7.3.5. Total Reflection and X-Ray Photoelectron Spectrometry
  • References
  • Index