Many-particle physics /

Saved in:
Bibliographic Details
Author / Creator:Mahan, Gerald D.
Edition:2nd ed.
Imprint:New York : Plenum Press, 1990.
Description:xiv, 1032 p. : ill. ; 25 cm.
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/1033755
Hidden Bibliographic Details
ISBN:0306434237
Notes:Includes bibliographical references.
Table of Contents:
  • 1.. Introductory Material
  • 1.1.. Harmonic Oscillators and Phonons
  • 1.2.. Second Quantization for Particles
  • 1.3.. Electron-Phonon Interactions
  • 1.3.1.. Interaction Hamiltonian
  • 1.3.2.. Localized Electron
  • 1.3.3.. Deformation Potential
  • 1.3.4.. Piezoelectric Interaction
  • 1.3.5.. Polar Coupling
  • 1.4.. Spin Hamiltonians
  • 1.4.1.. Homogeneous Spin Systems
  • 1.4.2.. Impurity Spin Models
  • 1.5.. Photons
  • 1.5.1.. Gauges
  • 1.5.2.. Lagrangian
  • 1.5.3.. Hamiltonian
  • 1.6.. Pair Distribution Function
  • Problems
  • 2.. Green's Functions at Zero Temperature
  • 2.1.. Interaction Representation
  • 2.1.1.. Schrodinger
  • 2.1.2.. Heisenberg
  • 2.1.3.. Interaction
  • 2.2.. S Matrix
  • 2.3.. Green's Functions
  • 2.4.. Wick's Theorem
  • 2.5.. Feynman Diagrams
  • 2.6.. Vacuum Polarization Graphs
  • 2.7.. Dyson's Equation
  • 2.8.. Rules for Constructing Diagrams
  • 2.9.. Time-Loop S Matrix
  • 2.9.1.. Six Green's Functions
  • 2.9.2.. Dyson's Equation
  • 2.10.. Photon Green's Functions
  • Problems
  • 3.. Nonzero Temperatures
  • 3.1.. Introduction
  • 3.2.. Matsubara Green's Functions
  • 3.3.. Retarded and Advanced Green's Functions
  • 3.4.. Dyson's Equation
  • 3.5.. Frequency Summations
  • 3.6.. Linked Cluster Expansions
  • 3.6.1.. Thermodynamic Potential
  • 3.6.2.. Green's Functions
  • 3.7.. Real-Time Green's Functions
  • 3.7.1.. Wigner Distribution Function
  • 3.8.. Kubo Formula for Electrical Conductivity
  • 3.8.1.. Transverse Fields, Zero Temperature
  • 3.8.2.. Nonzero Temperatures
  • 3.8.3.. Zero Frequency
  • 3.8.4.. Photon Self-Energy
  • 3.9.. Other Kubo Formulas
  • 3.9.1.. Pauli Paramagnetic Susceptibility
  • 3.9.2.. Thermal Currents and Onsager Relations
  • 3.9.3.. Correlation Functions
  • Problems
  • 4.. Exactly Solvable Models
  • 4.1.. Potential Scattering
  • 4.1.1.. Reaction Matrix
  • 4.1.2.. T Matrix
  • 4.1.3.. Friedel's Theorem
  • 4.1.4.. Impurity Scattering
  • 4.1.5.. Ground State Energy
  • 4.2.. Localized State in the Continuum
  • 4.3.. Independent Boson Models
  • 4.3.1.. Solution by Canonical Transformation
  • 4.3.2.. Feynman Disentangling of Operators
  • 4.3.3.. Einstein Model
  • 4.3.4.. Optical Absorption and Emission
  • 4.3.5.. Sudden Switching
  • 4.3.6.. Linked Cluster Expansion
  • 4.4.. Bethe Lattice
  • 4.4.1.. Electron Green's Function
  • 4.4.2.. Ising Model
  • 4.5.. Tomonaga Model
  • 4.5.1.. Tomonaga Model
  • 4.5.2.. Spin Waves
  • 4.5.3.. Luttinger Model
  • 4.5.4.. Single-Particle Properties
  • 4.5.5.. Interacting System of Spinless Fermions
  • 4.6.. Polaritons
  • 4.6.1.. Semiclassical Discussion
  • 4.6.2.. Phonon-Photon Coupling
  • 4.6.3.. Exciton-Photon Coupling
  • Problems
  • 5.. Homogeneous Electron Gas
  • 5.1.. Exchange and Correlation
  • 5.1.1.. Kinetic Energy
  • 5.1.2.. Hartree
  • 5.1.3.. Exchange
  • 5.1.4.. Seitz's Theorem
  • 5.1.5.. [Sigma superscript (2a)]
  • 5.1.6.. [Sigma superscript (2b)]
  • 5.1.7.. [Sigma superscript (2c)]
  • 5.1.8.. High-Density Limit
  • 5.1.9.. Pair Distribution Function
  • 5.2.. Wigner Lattice
  • 5.3.. Metallic Hydrogen
  • 5.4.. Linear Screening
  • 5.5.. Model Dielectric Functions
  • 5.5.1.. Thomas-Fermi
  • 5.5.2.. Lindhard, or RPA
  • 5.5.3.. Hubbard
  • 5.5.4.. Singwi-Sjolander
  • 5.5.5.. Local Field Corrections
  • 5.5.6.. Vertex Corrections
  • 5.6.. Properties of the Electron Gas
  • 5.6.1.. Pair Distribution Function
  • 5.6.2.. Screening Charge
  • 5.6.3.. Correlation Energies
  • 5.6.4.. Compressibility
  • 5.6.5.. Pauli Paramagnetic Susceptibility
  • 5.7.. Sum Rules
  • 5.8.. One-Electron Properties
  • 5.8.1.. Renormalization Constant Z[subscript F]
  • 5.8.2.. Effective Mass
  • 5.8.3.. Mean-Free-Path
  • Problems
  • 6.. Strong Correlations
  • 6.1.. Kondo Model
  • 6.1.1.. High-Temperature Scattering
  • 6.1.2.. Low-Temperature State
  • 6.1.3.. Kondo Temperature
  • 6.1.4.. Kondo Resonance
  • 6.2.. Single-Site Anderson Model
  • 6.2.1.. No Hybridization
  • 6.2.2.. With Hybridization
  • 6.2.3.. Self-Energy of Electrons
  • 6.3.. Hubbard Model
  • 6.3.1.. Spin and Charge Separation
  • 6.3.2.. Exchange Graphs
  • 6.4.. Hubbard Model: Magnetic Phases
  • 6.4.1.. Ferromagnetism
  • 6.4.2.. Antiferromagnetism
  • 6.4.3.. An Example
  • 6.4.4.. Local Field Corrections
  • Problems
  • 7.. Electron-Phonon Interaction
  • 7.1.. Frohlich Hamiltonian
  • 7.1.1.. Brillouin-Wigner Perturbation Theory
  • 7.1.2.. Rayleigh-Schrodinger Perturbation Theory
  • 7.1.3.. Strong Coupling Theory
  • 7.1.4.. Linked Cluster Theory
  • 7.2.. Small Polaron Theory
  • 7.2.1.. Large Polarons
  • 7.2.2.. Small Polarons
  • 7.2.3.. Diagonal Transitions
  • 7.2.4.. Nondiagonal Transitions
  • 7.2.5.. Kubo Formula
  • 7.3.. Heavily Doped Semiconductors
  • 7.3.1.. Screened Interaction
  • 7.3.2.. Experimental Verifications
  • 7.3.3.. Electron Self-Energies
  • 7.4.. Metals
  • 7.4.1.. Phonons in Metals
  • 7.4.2.. Electron Self-Energies
  • Problems
  • 8.. dc Conductivities
  • 8.1.. Electron Scattering by Impurities
  • 8.1.1.. Boltzmann Equation
  • 8.1.2.. Kubo Formula: Approximate Solution
  • 8.1.3.. Ward Identities
  • 8.2.. Mobility of Frohlich Polarons
  • 8.3.. Electron-Phonon Relaxation Times
  • 8.3.1.. Metals
  • 8.3.2.. Semiconductors
  • 8.3.3.. Temperature Relaxation
  • 8.4.. Electron-Phonon Interactions in Metals
  • 8.4.1.. Force-Force Correlation Function
  • 8.4.2.. Kubo Formula
  • 8.4.3.. Mass Enhancement
  • 8.4.4.. Thermoelectric Power
  • 8.5.. Quantum Boltzmann Equation
  • 8.5.1.. Derivation of the QBE
  • 8.5.2.. Gradient Expansion
  • 8.5.3.. Electron Scattering by Impurities
  • 8.6.. Quantum Dot Tunneling
  • 8.6.1.. Electron Tunneling
  • 8.6.2.. Quantum Dots
  • 8.6.3.. Rate Equations
  • 8.6.4.. Quantum Conductance
  • Problems
  • 9.. Optical Properties of Solids
  • 9.1.. Nearly Free-Electron Systems
  • 9.1.1.. General Properties
  • 9.1.2.. Force-Force Correlation Functions
  • 9.1.3.. Frohlich Polarons
  • 9.1.4.. Interband Transitions
  • 9.1.5.. Phonons
  • 9.2.. Wannier Excitons
  • 9.2.1.. The Model
  • 9.2.2.. Solution by Green's Functions
  • 9.2.3.. Core-Level Spectra
  • 9.3.. X-ray Spectra in Metals
  • 9.3.1.. Physical Model
  • 9.3.2.. Edge Singularities
  • 9.3.3.. Orthogonality Catastrophe
  • 9.3.4.. MND Theory
  • 9.3.5.. XPS Spectra
  • Problems
  • 10.. Superconductivity
  • 10.1.. Cooper Instability
  • 10.1.1.. BCS Theory
  • 10.2.. Superconducting Tunneling
  • 10.2.1.. Normal-Superconductor
  • 10.2.2.. Two Superconductors
  • 10.2.3.. Josephson Tunneling
  • 10.2.4.. Infrared Absorption
  • 10.3.. Strong Coupling Theory
  • 10.4.. Transition Temperature
  • Problems
  • 11.. Superfluids
  • 11.1.. Liquid [superscript 4]He
  • 11.1.1.. Hartree and Exchange
  • 11.1.2.. Bogoliubov Theory of [superscript 4]He
  • 11.1.3.. Off-Diagonal Long-Range Order
  • 11.1.4.. Correlated Basis Functions
  • 11.1.5.. Experiments on n[subscript k]
  • 11.1.6.. Bijl-Feynman Theory
  • 11.1.7.. Improved Excitation Spectra
  • 11.1.8.. Superfluidity
  • 11.2.. Liquid [superscript 3]He
  • 11.2.1.. Fermi Liquid Theory
  • 11.2.2.. Experiments and Microscopic Theories
  • 11.2.3.. Interaction Between Quasiparticles: Excitations
  • 11.2.4.. Quasiparticle Transport
  • 11.2.5.. Superfluid [superscript 3]He
  • 11.3.. Quantum Hall Effects
  • 11.3.1.. Landau Levels
  • 11.3.2.. Classical Hall Effect
  • 11.3.3.. Quantum Hall Effect
  • 11.3.3.1.. Fixed Density
  • 11.3.3.2.. Fixed Chemical Potential
  • 11.3.3.3.. Impurity Dominated
  • 11.3.4.. Laughlin Wave Function
  • 11.3.5.. Collective Excitations
  • 11.3.5.1.. Magnetorotons
  • 11.3.5.2.. Quasiholes
  • Problems
  • References
  • Author Index
  • Subject Index