Toward analytical chaos in nonlinear systems /
Saved in:
Author / Creator: | Luo, Albert C. J. |
---|---|
Imprint: | Chichester, West Sussex, United Kingdom : Wiley, 2014. |
Description: | 1 online resource. |
Language: | English |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/10429341 |
ISBN: | 9781118887172 1118887174 9781118887219 1118887212 9781118658611 9781118887158 1118887158 9781306706186 1306706181 |
---|---|
Notes: | Machine generated contents note: Preface Chapter 1 Introduction 1 1.1 Brief history 1 1.2 boook layout 5 Chapter 2 Nonlinear Dynamical Systems 7 2.1 Continuous systems 7 2.2 Equilibrium and stability 10 2.3 Bifurcation and stability switching 20 2.3.1 Stability and switching 21 2.3.2 Bifurcations 32 Chapter 3 An Analytical Method for Periodic Flows 39 3.1 Nonlinear dynamical sysetms 39 3.1.1 Autonomous nonlinear systems 39 3.1.2 Non-autonomous nonlinear systems 51 3.2 Nonlinear vibration systems 55 3.2.1 Free vibration systems 56 3.2.2 Periodically excited vibration systems 70 3.3 Time-delayed nonlinear systems 75 3.3.1 Autonomous time-delayed nonlinear systems 75 3.3.2 Non-authonomous, time-delayed nonlinear systems 95 3.4 Time-delayed nonlinear vibration systems 96 3.4.1 Time-delayed, free vibration systems 96 3.4.2 Periodically excited vibration systems with time-delay 114 Chapter 4 Analytical Periodic to Quasi-periodic Flows 121 4.1 Nonlinear dynamical sysetms 121 4.2 Nonlinear vibration systems 137 4.3 Time-delayed nonlinear systems 147 4.4 Time-delayed, nonlinear vibration systems 160 Chapter 5 Quadratic Nonlinear Oscillators 175 5.1 Period-1 motions 175 5.1.1 Analytical solutions 175 5.1.2 Analytical predictions 180 5.1.3 Numerical illustrations 185 5.2 Period-m motions 191 5.2.1 Analytical solutions 196 5.2.2 Analytical bifurcation trees 200 5.2.3 Numiercal illustrations 185 5.3 Arbitrary periodic forcing 235 Chapter 6 Time-delayed Nonlinear Oscillators 237 6.1 Analytical solutions of period-m moitons 237 6.2 Analytical bifurcation trees 257 6.3 Illustrations of periodic motions 265 References 273 Subject index 277 . Includes bibliographical references and index. Description based on online resource; title from digital title page (viewed on January 11, 2016). |
Other form: | Print version: Luo, Albert C. J. Toward analytical chaos in nonlinear systems Chichester, West Sussex, United Kingdom : John Wiley & Sons Inc., 2014 9781118658611 |
Similar Items
-
Smooth and nonsmooth high dimensional chaos and the melnikov-type methods /
by: Awrejcewicz, J. (Jan)
Published: (2007) -
Smooth and nonsmooth high dimensional chaos and the melnikov-type methods /
by: Awrejcewicz, J. (Jan)
Published: (2007) -
Chaos in nonlinear oscillators : controlling and synchronization /
by: Lakshmanan, M. (Muthusamy)
Published: (1996) -
Strongly nonlinear oscillators : analytical solutions /
by: Cveticanin, L.
Published: (2014) -
Nonlinear oscillations, dynamical systems, and bifurcations of vector fields /
by: Guckenheimer, John
Published: (1983)