Image processing and GIS for remote sensing : techniques and applications /
Saved in:
Author / Creator: | Liu, Jian-Guo, author. |
---|---|
Uniform title: | Essential image processing and GIS for remote sensing |
Edition: | Second edition. |
Imprint: | Chichester, UK ; Hoboken, NJ : Wiley Blackwell, 2016. |
Description: | xii, 457 pages ; 26 cm |
Language: | English |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/10518451 |
Table of Contents:
- Overview of the book
- Part I. Image Processing
- 1. Digital image and display
- 1.1. What is a digital image?
- 1.2. Digital image display
- 1.2.1. Monochromatic display
- 1.2.2. Tristimulus colour theory and RGB (red, green, blue) colour display
- 1.2.3. Pseudo-colour display
- 1.3. Some key points
- 1.4. Questions
- 2. Point operations (contrast enhancement)
- 2.1. Histogram modification and lookup table
- 2.2. Linear contrast enhancement (LCE)
- 2.2.1. Derivation of a linear function from two points
- 2.3. Logarithmic and exponential contrast enhancement
- 2.3.1. Logarithmic contrast enhancement
- 2.3.2. Exponential contrast enhancement
- 2.4. Hisiogram equalisation (HE)
- 2.5. Histogram matching (HM) and Gaussian stretch
- 2.6. Balance contrast enhancement technique (BCET)
- 2.6.1. Derivation of coefficients a, b and c for a BCET parabolic function (Liu 1991)
- 2.7. Clipping in contrast enhancement
- 2.8. Tips for interactive contrast enhancement
- 2.9. Questions
- 3. Algebraic operations (multi-image point operations)
- 3.1. Image addition
- 3.2. Image subtraction (differencing)
- 3.3. Image multiplication
- 3.4. Image division (ratio)
- 3.5. Index derivation and supervised enhancement
- 3.5.1. Vegetation indices
- 3.5.2. Iron oxide ratio index
- 3.5.3. TM clay (hydrated) mineral ratio index
- 3.6. Standardization and logarithmic residual
- 3.7. Simulated reflectance
- 3.7.1. Analysis of solar radiation balance and simulated irradiance
- 3.7.2. Simulated spectral reflectance image
- 3.7.3. Calculation of weights
- 3.7.4. Example: ATM simulated reflectance colour composite
- 3.7.5. Comparison with ratio and logarithmic residual techniques
- 3.8. Summary
- 3.9. Questions
- 4. Filtering and neighbourhood processing
- 4.1. FT: Understanding filtering in image frequency
- 4.2. Concepts of convolution for image filtering
- 4.3. Low pass filters (smoothing)
- 4.3.1. Gaussian filter
- 4.3.2. K nearest mean filter
- 4.3.3. Median filter
- 4.3.4. Adaptive median filter
- 4.3.5. K nearest median filter
- 4.3.6. Mode (majority) filter
- 4.3.7. Conditional smoothing filters
- 4.4. High pass filters (edge enhancement)
- 4.4.1. Gradient filters
- 4.4.2. Lapiacian filters
- 4.4.3. Edge-sharpening filters
- 4.5. Local contrast enhancement
- 4.6. FFT selective and adaptive filtering
- 4.6.1. FFT selective filtering
- 4.6.2. FFT adaptive filtering
- 4.7. Summary
- 4.8. Questions
- 5. RGB-IHS transformation
- 5.1. Colour co-ordinate transformation
- 5.2. IHS de-correlation stretch
- 5.3. Direct de-correlation stretch technique
- 5.4. Hue RGB colour composites
- 5.5. Derivation of RGB-IHS and IHS-RGB transformation based on 3D geometry of the RGB colour cube
- 5.5.1. Derivation of RGB-IHS transformation
- 5.5.2. Derivation of THS-RGB transformation
- 5.6. Mathematical proof of DDS and its properties
- 5.6.1. Mathematical proof of DDS
- 5.6.2. The properties of DDS
- 5.7. Summary
- 5.8. Questions
- 6. Image fusion techniques
- 6.1. RGB-IHS transformation as a tool for data fusion
- 6.2. Brovey transform (intensity modulation)
- 6.3. Smoothing filter-based intensity modulation
- 6.3.1. The principle of SFIM
- 6.3.2. Merits and limitations of SFIM
- 6.3.3. An example of SFIM pan-sharpen of Landsat 8 OLI image
- 6.4. Summary
- 6.5. Questions
- 7. Principal component analysis
- 7.1. Principle of the PCA
- 7.2. PC images and PC colour composition
- 7.3. Selective PCA for PC colour composition
- 7.3.1. Dimensionality and colour confusion reduction
- 7.3.2. Spectral contrast mapping
- 7.3.3. FPCS spectral contrast mapping
- 7.4. De-correlation stretch
- 7.5. Physical property orientated coordinate transformation and tasselled cap transformation
- 7.6. Statistical methods for band selection
- 7.6.1. Review of Chavez's and Sheffield's methods
- 7.6.2. Index of three-dimensionality
- 7.7. Remarks
- 7.8. Questions
- 8. Image classification
- 8.1. Approaches of statistical classification
- 8.1.1. Unsupervised classification
- 8.1.2. Supervised classification
- 8.1.3. Classification processing and implementation
- 8.1.4. Summary of classification approaches
- 8.2. Unsupervised classification (iterative clustering)
- 8.2.1. Iterative clustering algorithms
- 8.2.2. Feature space iterative clustering
- 8.2.3. Seed selection
- 8.2.4. Cluster splitting along PC1
- 8.3. Supervised classification
- 8.3.1. Generic algorithm of supervised classification
- 8.3.2. Spectral angle mapping classification
- 8.4. Decision rules: Dissimilarity functions
- 8.4.1. Box classifier
- 8.4.2. Euclidean distance: Simplified maximum likelihood
- 8.4.3. Maximum likelihood
- 8.4.4. Optimal multiple point re-assignment (OMPR)
- 8.5. Post-classification processing: Smoothing and accuracy assessment
- 8.5.1. Class smoothing process
- 8.5.2. Classification accuracy assessment
- 8.6. Summary
- 5.6. Questions
- 9. Image geometric operations
- 9.1. Image geometric deformation
- 9.1.1. Platform flight coordinates, sensor status and imaging position
- 9.1.2. Earth rotation and curvature
- 9.2. Polynomial deformation model and image warping co-registration
- 9.2.1. Derivation of deformation model
- 9.2.2. Pixel DN re-sampling
- 9.3. GCP selection and automation of image co-registration
- 9.3.1. Manual and semi-automatic GCP selection
- 9.3.2. Automatic image co-registration
- 9.4. Summary
- 9.5. Questions
- 10. Introduction to interferometric synthetic aperture radar technique
- 10.1. The principle of a radar interferometer
- 10.2. Radar interferogram and DEM
- 10.3. Differential InSAR and deformation measurement
- 10.4. Multi-temporal coherence image and random change detection
- 10.5. Spatial de-correlation and ratio coherence technique
- 10.6. Fringe smoothing filter
- 10.7. Summary
- 10.8. Questions
- 11. Sub-pixel technology and its applications
- 11.1. Phase correlation algorithm
- 11.2. PC scanning for pixel-wise disparity estimation
- 11.2.1. Disparity estimation by PC scanning
- 11.2.2. The median shift propagation technique for disparity refinement
- 11.3. Pixel-wise image co-registration
- 11.3.1. Basic procedure of pixel-wise image co-registration using PC
- 11.3.2. An example of pixel-wise image co-registration
- 11.3.3. Limitations
- 11.3.4. Pixel-wise image co-registration-based SFIM pan-sharpen
- 11.4. Very narrow-baseline stereo matching and 3D data generation
- 11.4.1. The principle of stereo vision
- 11.4.2. Wide-baseline vs. narrow-baseline stereo
- 11.4.3. Narrow-baseline stereo matching using PC
- 11.4.4. Accuracy assessment and application examples
- 11.5. Ground motion/deformation detection and estimation
- 11.6. Summary
- Part II. Geographical Information Systems
- 12. Geographical information systems
- 12.1. Introduction
- 12.2. Software tools
- 12.3. GIS, cartography and thematic mapping
- 12.4. Standards, inter-operability and metadata
- 12.5. GIS and the internet
- 13. Data models and structures
- 13.1. Introducing spatial data in representing geographic features
- 13.2. How are spatial data different from other digital data?
- 13.3. Attributes and measurement scales
- 13.4. Fundamental data structures
- 13.5. Raster data
- 13.5.1. Data quantisation and storage
- 13.5.2. Spatial variability
- 13.5.3. Representing spatial relationships
- 13.5.4. The effect of resolution
- 13.5.5. Representing surface phenomena
- 13.6. Vector data
- 13.6.1. Vector data models
- 13.6.2. Representing logical relationships through geometry and feature definition
- 13.6.3. Extending the vector data model
- 13.6.4. Representing surfaces
- 13.7. Data conversion between models and structures
- 13.7.1. Vector to raster conversion (rasterisation)
- 13.7.2. Raster to vector conversion (vectorisation)
- 13.8. Summary
- 13.9. Questions
- 14. Defining a coordinate space
- 14.1. Introduction
- 14.2. Datums and projections
- 14.2.1. Describing and measuring the earth
- 14.2.2. Measuring height: The geoid
- 14.2.3. Coordinate systems
- 14.2.4. Datums
- 14.2.5. Geometric distortions and projection models
- 14.2.6. Major map projections
- 14.2.7. Projection specification
- 14.3. How coordinate information is stored and accessed
- 14.4. Selecting appropriate coordinate systems
- 14.5. Questions
- 15. Operations
- 15.1. Introducing operations on spatial data
- 15.2. Map algebra concepts
- 15.2.1. Working with Null data
- 15.2.2. Logical and conditional processing
- 15.2.3. Other types of operator
- 15.3. Local operations
- 15.3.1. Primary operations
- 15.3.2. Unary operations
- 15.3.3. Binary operations
- 15.3.4. N-ary operations
- 15.4. Neighbourhood operations
- 15.4.1. Local neighbourhood
- 15.4.2. Extended neighbourhood
- 15.5. Vector equivalents to raster map algebra
- 15.5.1. Buffers
- 15.5.2. Dissolve
- 15.5.3. Clipping
- 15.5.4. Intersection
- 15.6. Automating GIS functions
- 15.7. Summary
- 15.8. Questions
- 16. Extracting information from point data: Geostatistics
- 16.1. Introduction
- 16.2. Understanding the data
- 16.2.1. Histograms
- 16.2.2. Spatial auto-correlation
- 16.2.3. Variograms
- 16.2.4. Underlying trends and natural barriers
- 16.3. Interpolation
- 16.3.1. Selecting sample size
- 16.3.2. Interpolation methods
- 16.3.3. Deterministic interpolators
- 16.3.4. Stochastic interpolators
- 16.4. Summary
- 16.5. Questions
- 17. Representing and exploiting surfaces
- 17.1. Introduction
- 17.2. Sources and uses of surface data
- 17.2.1. Digital elevation models
- 17.2.2. Vector surfaces and objects
- 17.2.3. Uses of surface data
- 17.3. Visualising surfaces
- 17.3.1. Visualising in two dimensions
- 17.3.2. Visualising in three dimensions
- 17.4. Extracting surface parameters
- 17.4.1. Slope: Gradient and aspect
- 17.4.2. Curvature
- 17.4.3. Surface topology: Drainage networks and watersheds
- 17.4.4. Viewshed
- 17.4.5. Calculating volume
- 17.5. Summary
- 17.6. Questions
- 18. Decision support and uncertainly
- 18.1. Introduction
- 18.2. Decision support
- 18.3. Uncertainty
- 18.3.1. Criterion uncertainty
- 18.3.2. Threshold uncertainty
- 18.3.3. Decision rule uncertainty
- 18.4. Risk and hazard
- 18.5. Dealing with uncertainty in GIS-based spatial analysis
- 18.5.1. Error assessment (criterion uncertainty)
- 18.5.1. Fuzzy membership (threshold and decision rule uncertainty)
- 18.5.2. Multi-criteria decision making (decision rule uncertainty)
- 18.5.3. Error propagation and sensitivity analysis (decision rule uncertainty)
- 18.5.4. Result validation (decision rule uncertainty)
- 18.6. Summary
- 18.7. Questions
- 19. Complex problems and multi-criterion evaluation
- 19.1. Introduction
- 19.2. Different approaches and models
- 19.2.1. Knowledge-driven (conceptual)
- 19.2.2. Data-driven (empirical)
- 19.2.3. Data-driven (neural network)
- 19.3. Evaluation criteria
- 19.4. Deriving weighting coefficients
- 19.4.1. Rating
- 19.4.2. Ranking
- 19.4.3. Pairwise comparison
- 19.5. Multi-criterion combination methods
- 19.5.1. Boolean logical combination
- 19.5.2. Index-overlay and algebraic combination
- 19.5.3. Weights of evidence modelling based on Bayesian probability theory
- 19.5.4. Belief and Dempster-Shafer Theory
- 19.5.5. Weighted factors in linear combination (WLC)
- 19.5.6. Fuzzy logic
- 19.5.7. Vectorial fuzzy modelling
- 19.6. Summary
- 19.7. Questions
- Part III. Remote Sensing applications
- 20. Image processing and GIS operation strategy
- 20.1. General image processing strategy
- 20.1.1. Preparation of basic working dataset
- 20.1.2. Image processing
- 20.1.3. Image interpretation and map composition
- 20.2. Remote sensing-based GIS projects: From images to thematic mapping
- 20.3. An example of thematic mapping based on optimal visualisation and interpretation of multi-spectral satellite imagery
- 20.3.1. Background information
- 20.3.2. Image enhancement for visual observation
- 20.3.3. Data capture and image interpretation
- 20.3.4. Map composition
- 20.4. Summary
- 21. Thematic teaching case studies in SE Spain
- 21.1. Thematic information extraction (1): Gypsum natural outcrop mapping and quarry change assessment
- 21.1.1. Data preparation and general visualisation
- 21.1.2. Gypsum enhancement and extraction based on spectral analysis
- 21.1.3. Gypsum quarry changes during 1984-2000
- 21.1.4. Summary of the case study
- 21.1.5. Questions
- 21.2. Thematic information extraction (2): Spectral enhancement and mineral mapping of epithermal gold alteration and iron-ore deposits in ferroan dolomite
- 21.2.1. Image datasets and data preparation
- 21.2.2. ASTER image processing and analysis for regional prospectivity
- 21.2.3. ATM image processing and analysis for target extraction
- 21.2.4. Summary of the case study
- 21.2.5. Questions
- 21.3. Remote sensing and GIS: Evaluating vegetation and landuse change in the Nijar Basin, SE Spain
- 21.3.1. Introduction
- 21.3.2. Data preparation
- 21.3.3. Highlighting vegetation
- 21.3.4. Highlighting plastic greenhouses
- 21.3.5. Identifying change between different dates of observation
- 21.3.6. Summary of the case study
- 21.3.7. Questions
- 21.3.8. References
- 21.4. Applied remote sensing and GIS: A combined interpretive tool for regional tectonics, drainage and water resources in the Andarax basin
- 21.4.1. Introduction
- 21.4.2. Geological and hydrological setting
- 21.4.3. Case study objectives
- 21.4.4. Landuse and vegetation
- 21.4.5. Lithological enhancement and discrimination
- 21.4.6. Structural enhancement and interpretation
- 21.4.7. Summary of the case study
- 21.4.8. Questions
- 21.4.9. References
- 22. Research case studies
- 22.1. Vegetation change in the Three Parallel Rivers region, Yunnan Province, China
- 22.1.1. Introduction
- 22.1.2. The study area and data
- 22.1.3. NDVI Difference Red, Green and Intensity (NDV1-D-RGI) composite
- 22.1.4. Data processing
- 22.1.5. Interpretation of regional vegetation changes
- 22.1.6. Summary
- 22.1.7. References
- 22.2. GTS modelling of earthquake damage zones using satellite imagery and digital elevation model (DEM) data
- 22.2.1. Introduction
- 22.2.2. The models
- 22.2.3. Derivation of input variables
- 22.2.4. Earthquake damage zone modelling and assessment
- 22.2.5. Summary
- 22.2.6. References
- 22.3. Predicting landslides using fuzzy geohazard mapping: An example from Piemonte, north-west Italy
- 22.3.1. Introduction
- 22.3.2. The study area
- 22.3.3. A holistic GIS-based approach to landslide hazard assessment
- 22.3.4. Summary
- 22.3.5. Questions
- 22.3.6. References
- 22.4. Land surface change detection in a desert area in Algeria using multi-temporal ERS SAR coherence images
- 22.4.1. The study area
- 22.4.2. Coherence image processing and evaluation
- 22.4.3. Image visualisation and interpretation for change detection
- 22.4.4. Summary
- 22.4.5. References
- 23. Industrial case studies
- 23.1. Multi-criteria assessment of mineral prospectivity in SE Greenland
- 23.1.1. Introduction and objectives
- 23.1.2. Area description
- 23.1.3. Litho-tectonic context - why the project's concept works
- 23.1.4. Mineral deposit types evaluated
- 23.1.5. Data preparation
- 23.1.6. Multi-criteria spatial modeling
- 23.1.7. Summary
- 23.1.8. Questions
- 23.1.9. Acknowledgements
- 23.1.10. References
- 23.2. Water resource exploration in Somalia
- 23.2.1. Introduction
- 23.2.2. Data preparation
- 23.2.3. Preliminary geological enhancements and target area identification
- 23.2.4. Discrimination potential aquiler lithologies using ASTER spectral indices
- 23.2.5. Summary
- 23.2.6. Questions
- 23.2.7. References
- Part IV. Summary
- 24. Concluding remarks
- 24.1. Image processing
- 24.2. Geographic Information Systems
- 24.3. Final remarks
- Appendix A. Imaging sensor systems and remote sensing satellites
- A.1. Multi-spectral sensing
- A.2. Broadband multi-spectral sensors
- A.2.1. Digital camera
- A.2.2. Across-track mechanical scanner
- A.2.3. Along-track push-broom scanner
- A.3. Thermal sensing and TIR sensors
- A.4. Hyperspectral sensors (imaging spectrometers)
- A.5. Passive microwave sensors
- A.6. Active sensing: SAR imaging systems
- Appendix B. Online resources for information, software and data
- B.1. Software - proprietary, low cost and free (shareware)
- B.2. Information and technical information on standards, best practice, formals, techniques and various publications
- B.3. Data sources including online satellite imagery from major suppliers, DEM data plus GIS maps and data of all kinds
- References
- Index