Bioengineering fundamentals /

Saved in:
Bibliographic Details
Author / Creator:Saterbak, Ann.
Imprint:Upper Saddle River, N.J. : Pearson Prentice Hall, ©2007.
Description:xi, 540 pages : illustrations ; 27 cm.
Language:English
Series:Pearson Prentice Hall bioengineering
Pearson Prentice Hall bioengineering.
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10541647
Hidden Bibliographic Details
Other authors / contributors:San, Ka-Yiu.
McIntire, Larry V.
ISBN:0130938386
9780130938381
0135132584
9780135132586
Notes:Includes bibliographical references and index.
Summary:"Combining engineering principles with technical rigor and a problem-solving focus, this textbook takes a unifying, interdisciplinary approach to the conservation laws that form the foundation of bioengineering: mass, energy, charge, and momentum." "For sophomore-level courses in bioengineering, biomedical engineering, and related fields."--Jacket.
Other form:Online version: Saterbak, Ann. Bioengineering fundamentals. Upper Saddle River, N.J. : Pearson Prentice Hall, ©2007
Table of Contents:
  • 1. Introduction to Engineering Calculation
  • 1.1. Instructional Objectives
  • 1.2. Physical Variables, Units, and Dimensions
  • 1.3. Unit Conversion
  • 1.4. Dimensional Analysis
  • 1.5. Specific Physical Variables
  • 1.5.1. Extensive and Intensive Properties
  • 1.5.2. Scalar and Vector Quantities
  • 1.5.3. Applications
  • 1.5.3.1. Parkinson's Disease
  • 1.5.3.2. Mars Surface Conditions
  • 1.5.3.3. Getting to Mars
  • 1.5.3.4. Gene Transfer Technology
  • 1.5.3.5. Microsurgical Assistant
  • 1.5.3.6. Victoria Falls
  • 1.5. Quantization and Data Presentation
  • 1.6. Solving Systems of Linear Equations in MATLAB
  • 1.7. Methodology for Solving Engineering Problems
  • References
  • Problems
  • 2. Foundations of Conservation Principles
  • 2.1. Instructional Objectives
  • 2.2. Introduction to the Conservation Laws
  • 2.3. Counting Extensive Properties in a System
  • 2.4. Accounting and Conservation Equations
  • 2.4.1. Algebraic Accounting Statements
  • 2.4.2. Differential Accounting Statements
  • 2.4.3. Integral Accounting Statements
  • 2.4.4. Algebraic Conservation Equation
  • 2.4.5. Differential Conservation Equation
  • 2.4.6. Integral Conservation Equation
  • 2.5. System Descriptions
  • 2.5.1. Describing the Input and Output Terms
  • 2.5.2. Describing the Generation and Consumption
  • Terms
  • 2.5.3. Describing the Accumulation Term
  • 2.5.4. Changing Your Assumptions Changes how a System is Described
  • 2.6. Summary of use of Accounting and Conservation Equations
  • Problems
  • 3. Conservation of Mass
  • 3.1. Instructional Objectives and Motivation
  • 3.1.1. Tissue Engineering
  • 3.2. Basic Mass Concepts
  • 3.3. Review of Mass Accounting and Conservation Statements
  • 3.4. Open, Non-Reacting, Steady-State Systems
  • 3.5. Steady-State Systems with Multiple Inlets and Outlets
  • 3.6. Systems with Multicomponent Mixtures
  • 3.7. Systems with Multiple Units
  • 3.8. Systems with Chemical and Biochemical Reactions
  • 3.9. Dynamic systems
  • References
  • Problems
  • 4. Conservation of Energy
  • 4.1. Instructional Objectives and Motivation
  • 4.1.1. Bioenergy
  • 4.2. Basic Energy Concepts
  • 4.2.1. Energy Possessed by Mass
  • 4.2.2. Energy in Transition
  • 4.2.3. Enthalpy
  • 4.3. Review of Energy Conservation Statements
  • 4.4. Closed and Isolated Systems
  • 4.5. Calculation of Enthalpy in Non-Reactive Processes
  • 4.5.1. Enthalpy as a State Function
  • 4.5.2. Change in Temperature
  • 4.5.3. Change in Pressure
  • 4.5.4. Changes in Phase
  • 4.5.5. Mixing Effects
  • 4.6. Open, Steady-State Systems-No Potential or Kinetic Energy Changes
  • 4.7. Open, Steady-State Systems with Potential or Kinetic Energy Changes
  • 4.8. Calculation of Enthalpy in Reactive Processes
  • 4.8.1. Heat of Reaction
  • 4.8.2. Heat of Formation and Heat of Combustion
  • 4.8.3. Heat of Reaction Calculations at Non-Standard Conditions
  • 4.9. Open Systems with Reactions
  • 4.10. Dynamic Systems
  • References
  • Problems
  • 5. Conservation of Charge
  • 5.1. Instructional Objectives and Motivation
  • 5.1.1. Neurosensors
  • 5.2. Basic Charge Concepts
  • 5.2.1. Charge
  • 5.2.2. Current
  • 5.2.3. Coulomb's Law and Electric Fields
  • 5.2.4. Electrical Energy
  • 5.3. Review of Charge Accounting and Conservation Statements
  • 5.3.1. Accounting Equations for Positive and Negative Charge
  • 5.3.2. Conservation Equation for Net Charge
  • 5.4. Review of Electrical Energy Accounting Statement
  • 5.5. Kirchhoff's Current Law (KCL)
  • 5.6. Kirchhoff's Voltage Law (KVL)
  • 5.6.1. Elements that Generate Electrical Energy
  • 5.6.2. Elements that Consume Electrical Energy
  • 5.6.3. Discussion and Derivation of KVL
  • 5.6.4. Einthoven's Law
  • 5.7. Dynamic Systems
  • 5.8. Dynamic Systems and Electrical Energy
  • 5.9. Reacting Systems-Focus on Charge
  • 5.9.1. Radioactive Decay
  • 5.9.2. Acids and Bases
  • 5.9.3. Electrochemical Reactions
  • 5.10. Reacting Systems-Focus on Electrical Energy
  • References
  • Problems
  • 6. Conservation of Momentum
  • 6.1. Instructional Objectives and Motivation
  • 6.1.1. Bicycle Kinematics
  • 6.2. Basic Momentum Concepts
  • 6.2.1. Transfer of Linear Momentum Possessed by Mass
  • 6.2.2. Transfer of Linear Momentum Contributed by Forces
  • 6.2.3. Transfer of Angular Momentum Possessed by Mass
  • 6.2.4. Transfer of Angular Momentum Contributed by Forces
  • 6.2.5. Definition of Particles, Rigid Bodies, and Fluids
  • 6.3. Review of Linear Momentum Conservation Statements
  • 6.4. Review of Angular Momentum Conservation Statements
  • 6.5. Rigid-Body Statics
  • 6.6. Fluid Statics
  • 6.7. Isolated, Steady-State Systems
  • 6.8. Steady-State Systems with Movement of Mass Across System Boundaries
  • 6.9. Unsteady-State Systems
  • 6.10. Reynolds Number
  • 6.11. Mechanical Energy and Bernoulli Equations
  • 6.11.1. Mechanical Energy Accounting Equation
  • 6.11.2. Bernoulli Equation
  • 6.11.3. Additional Applications Using the Mechanical Energy and Bernoulli Equations
  • References
  • Problems
  • 7. Case Studies
  • 7.A. Breathe Easy: the Human Lungs
  • Background Information
  • References
  • Problems Focusing on the Human Lungs
  • 7.B. Keeping the Beat: the Human Heart
  • Background Information
  • References
  • Problems Focusing on the Human Heart
  • 7.C. On Your Way Out: the Human Kidneys
  • Background Information
  • References
  • Problems Focusing on the Human Kidneys
  • Appendices
  • Appendix A. List of Symbols
  • Appendix B. Factors for Unit Conversion
  • Appendix C. Periodic Table of Elements
  • Appendix D. Tables of Biological Data
  • Appendix E. Thermodynamic Data