Partial differential equations : an introduction to theory and applications /

Saved in:
Bibliographic Details
Author / Creator:Shearer, Michael.
Imprint:Princeton : Princeton University Press, [2015]
Description:x, 274 pages ; 26 cm
Language:English
Subject:
Format: Print Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/10541873
Hidden Bibliographic Details
Other authors / contributors:Levy, Rachel, 1968-
ISBN:9780691161297
0691161291
Notes:Includes bibliographical references (pages 265-267) and index.
Table of Contents:
  • Preface
  • 1. Introduction
  • 1.1. Linear PDE
  • 1.2. Solutions; Initial and Boundary Conditions
  • 1.3. Nonlinear PDE
  • 1.4. Beginning Examples with Explicit Wave-like Solutions
  • Problems
  • 2. Beginnings
  • 2.1. Four Fundamental Issues in PDE Theory
  • 2.2. Classification of Second-Order PDE
  • 2.3. Initial Value Problems and the Cauchy-Kovalevskaya Theorem
  • 2.4. PDE from Balance Laws
  • Problems
  • 3. First-Order PDE
  • 3.1. The Method of Characteristics for Initial Value Problems
  • 3.2. The Method of Characteristics for Cauchy Problems in Two Variables
  • 3.3. The Method of Characteristics in R n
  • 3.4. Scalar Conservation Laws and the Formation of Shocks
  • Problems
  • 4. The Wave Equation
  • 4.1. The Wave Equation in Elasticity
  • 4.2. D'Alembert's Solution
  • 4.3. The Energy E(t) and Uniqueness of Solutions
  • 4.4. Duhamel's Principle for the Inhomogeneous Wave Equation
  • 4.5. The Wave Equation on R 2 and M 3
  • Problems
  • 5. The Heat Equation
  • 5.1. The Fundamental Solution
  • 5.2. The Cauchy Problem for the Heat Equation
  • 5.3. The Energy Method
  • 5.4. The Maximum Principle
  • 5.5. Duhamel's Principle for the Inhomogeneous Heat Equation
  • Problems
  • 6. Separation of Variables and Fourier Series
  • 6.1. Fourier Series
  • 6.2. Separation of Variables for the Heat Equation
  • 6.3. Separation of Variables for the Wave Equation
  • 6.4. Separation of Variables for a Nonlinear Heat Equation
  • 6.5. The Beam Equation
  • Problems
  • 7. Eigenfunctsons and Convergence of Fourier Series
  • 7.1. Eigenfunctions for ODE
  • 7.2. Convergence and Completeness
  • 7.3. Pointwise Convergence of Fourier Series
  • 7.4. Uniform Convergence of Fourier Series
  • 7.5. Convergence in L2
  • 7.6. Fourier Transform
  • Problems
  • 8. Laplace's Equation and Poisson's Equation
  • 8.1. The Fundamental Solution
  • 8.2. Solving Poisson's Equation in W
  • 8.3. Properties of Harmonic Functions
  • 8.4. Separation of Variables for Laplace's Equation
  • Problems
  • 9. Green's Functions and Distributions
  • 9.1. Boundary Value Problems
  • 9.2. Test Functions and Distributions
  • 9.3. Greens Functions
  • Problems
  • 10. Function Spaces
  • 10.1. Basic Inequalities and Definitions
  • 10.2. Multi-Index Notation
  • 10.3. Sobolev Spaces W k'p (U)
  • Problems
  • 11. Elliptic Theory with Sobolev Spaces
  • 11.1. Poisson's Equation
  • 11.2. Linear Second-Order Elliptic Equations
  • Problems
  • 12. Traveling Wave Solutions of PDE
  • 12.1. Burgers' Equation
  • 12.2. The Korteweg-de Vries Equation
  • 12.3. Fishers Equation
  • 12.4. The Bistable Equation
  • Problems
  • 13. Scalar Conservation Laws
  • 13.1. The Inviscid Burgers Equation
  • 13.2. Scalar Conservation Laws
  • 13.3. The Lax Entropy Condition Revisited
  • 13.4. Undercompressive Shocks
  • 13.5. The (Viscous) Burgers Equation
  • 13.6. Multidimensional Conservation Laws
  • Problems
  • 14. Systems of First-Order Hyperbolic PDE
  • 14.1. Linear Systems of First-Order PDE
  • 14.2. Systems of Hyperbolic Conservation Laws
  • 14.3. The Dam-Break Problem Using Shallow Water Equations
  • 14.4. Discussion
  • Problems
  • 15. The Equations of Fluid Mechanics
  • 15.1. The Navier-Stokes and Stokes Equations
  • 15.2. The Euler Equations
  • Problems
  • Appendix A. Multivariate Calculus
  • Appendix B. Analysis
  • Appendix C. Systems of Ordinary Differential Equations
  • References
  • Index