|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
11028161 |
003 |
ICU |
005 |
20170224043936.7 |
008 |
151119s2016 nyua 000 0 eng c |
010 |
|
|
|a 2015041121
|
040 |
|
|
|a OU/DLC
|b eng
|e rda
|c OSU
|d DLC
|d BTCTA
|d OCLCF
|d YDXCP
|d INU
|d XII
|d BDX
|d U3G
|
066 |
|
|
|c (S
|
019 |
|
|
|a 922161956
|
020 |
|
|
|a 9780521871501
|q (hardback)
|
020 |
|
|
|a 0521871506
|q (hardback)
|
035 |
|
|
|a (OCoLC)930462965
|z (OCoLC)922161956
|
042 |
|
|
|a pcc
|
050 |
0 |
0 |
|a QC176.8.E4
|b M368 2016
|
082 |
0 |
0 |
|a 539.7/2112
|2 23
|
100 |
1 |
|
|a Martin, Richard M.,
|d 1942-
|e author.
|0 http://id.loc.gov/authorities/names/n2003007158
|1 http://viaf.org/viaf/26435197
|
245 |
1 |
0 |
|a Interacting electrons :
|b theory and computational approaches /
|c Richard M. Martin, University of Illinois, Urbana-Champaign, Lucia Reining, Ecole Polytechnique, Palaiseau, David M. Ceperley, University of Illinois, Urbana-Champaign.
|
264 |
|
1 |
|a New York, NY :
|b Cambridge University Press,
|c 2016.
|
300 |
|
|
|a xiv, 818 pages :
|b illustrations ;
|c 26 cm
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|0 http://id.loc.gov/vocabulary/contentTypes/txt
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|0 http://id.loc.gov/vocabulary/mediaTypes/n
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|0 http://id.loc.gov/vocabulary/carriers/nc
|
520 |
|
|
|a "Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation"--
|c Provided by publisher.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|a Machine generated contents note:
|g 1.
|t The many-electron problem: introduction --
|t Summary --
|g 1.1.
|t The electronic structure problem --
|g 1.2.
|t Why is this problem hard? --
|g 1.3.
|t Why is the independent-electron picture so successful? --
|g 1.4.
|t Development of theoretical approaches to the many-body problem --
|g 1.5.
|t The many-body problem and computation --
|g 1.6.
|t The scope of this book --
|t Select Further Reading --
|g 2.
|t Signatures of electron correlation --
|t Summary --
|g 2.1.
|t What is meant by correlation? --
|g 2.2.
|t Ground-state and thermodynamic properties --
|g 2.3.
|t Magnetism and local moments --
|g 2.4.
|t Electron addition and removal: the bandgap problem and more --
|g 2.5.
|t Satellites and sidebands --
|g 2.6.
|t Particle-hole and collective excitations --
|g 2.7.
|t The Kondo effect and heavy fermions --
|g 2.8.
|t Mott insulators and metal-insulator transitions --
|g 2.9.
|t Lower dimensions: stronger interaction effects --
|g 2.10.
|t Wrap-up --
|g 3.
|t Concepts and models for interacting electrons --
|t Summary --
|g 3.1.
|t The Wigner transition and the homogeneous electron system --
|g 3.2.
|t The Mott transition and the Hubbard model --
|g 3.3.
|t Magnetism and spin models --
|g 3.4.
|t Normal metals and Fermi liquid theory --
|g 3.5.
|t The Kondo effect and the Anderson impurity model --
|g 3.6.
|t The Luttinger theorem and the Friedel sum rule --
|t Select Further Reading --
|t Exercises --
|g 4.
|t Mean fields and auxiliary systems --
|t Summary --
|g 4.1.
|t The Hartree and Hartree-Fock approximations --
|g 4.2.
|t Weiss mean field and the Curie-Weiss approximation --
|g 4.3.
|t Density functional theory and the Kohn-Sham auxiliary system --
|g 4.4.
|t The Kohn-Sham electronic structure --
|g 4.5.
|t Extensions of the Kohn-Sham approach --
|g 4.6.
|t Time-dependent density and current density functional theory --
|g 4.7.
|t Symmetry breaking in mean-field approximations and beyond --
|g 4.8.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 5.
|t Correlation functions --
|t Summary --
|g 5.1.
|t Expectation values and correlation functions --
|g 5.2.
|t Static one-electron properties --
|g 5.3.
|t Static two-particle correlations: density correlations and the structure factor --
|g 5.4.
|t Dynamic correlation functions --
|g 5.5.
|t Response functions --
|g 5.6.
|t The one-particle Green's function --
|g 5.7.
|t Useful quantities derived from the one-particle Green's function --
|g 5.8.
|t Two-particle Green's functions --
|t Select Further Reading --
|t Exercises --
|g 6.
|t Many-body wavefunctions --
|t Summary --
|g 6.1.
|t Properties of the many-body wavefunction --
|g 6.2.
|t Boundary conditions --
|g 6.3.
|t The ground-state wavefunction of insulators --
|g 6.4.
|t Correlation in two-electron systems --
|g 6.5.
|t Trial function local energy, Feynman-Kac formula, and wavefunction quality --
|g 6.6.
|t The pair product or Slater-Jastrow wavefunction --
|g 6.7.
|t Beyond Slater determinants --
|t Exercises --
|g 7.
|t Particles and quasi-particles --
|t Summary --
|g 7.1.
|t Dynamical equations and Green's functions for coupled systems --
|g 7.2.
|t The self-energy and the Dyson equation --
|g 7.3.
|t Illustration: a single state coupled to a continuum --
|g 7.4.
|t Interacting systems: the self-energy and spectral function --
|g 7.5.
|t Quasi-particles --
|g 7.6.
|t Quasi-particle equations --
|g 7.7.
|t Separating different contributions to a Dyson equation --
|g 7.8.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 8.
|t Functionals in many-particle physics --
|t Summary --
|g 8.1.
|t Density functional theory and the Hartree-Fock approximation --
|g 8.2.
|t Functionals of the Green's function G and self-energy E --
|g 8.3.
|t Functionals of the screened interaction W --
|g 8.4.
|t Generating functionals --
|g 8.5.
|t Conservation laws and conserving approximations --
|g 8.6.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 9.
|t Many-body perturbation theory: expansion in the interaction --
|t Summary --
|g 9.1.
|t The Coulomb interaction and perturbation theory --
|g 9.2.
|t Connecting the interacting and non-interacting systems --
|g 9.3.
|t Telling the story of particles: diagrams --
|g 9.4.
|t Making the story easier: two theorems --
|g 9.5.
|t Dyson equation for the one-particle Green's function, and the self-energy --
|g 9.6.
|t Diagrammatic expansion at non-vanishing temperature --
|g 9.7.
|t Self-consistent perturbation theory: from bare to dressed building blocks --
|g 9.8.
|t The Luttinger-Ward functional --
|g 9.9.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 10.
|t Many-body perturbation theory via functional derivatives --
|t Summary --
|g 10.1.
|t The equation of motion --
|g 10.2.
|t The functional derivative approach --
|g 10.3.
|t Dyson equations --
|g 10.4.
|t Conservation laws --
|g 10.5.
|t A starting point for approximations --
|g 10.6.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 11.
|t The RPA and the GW approximation for the self-energy --
|t Summary --
|g 11.1.
|t Hedin's equations --
|g 11.2.
|t Neglecting vertex corrections in the polarizability: the RPA --
|g 11.3.
|t Neglecting vertex corrections in the self-energy: the GW approximation --
|g 11.4.
|t Link between the GWA and static mean-field approaches --
|g 11.5.
|t Ground-state properties from the GWA --
|g 11.6.
|t The GWA in the homogeneous electron gas --
|g 11.7.
|t The GWA in small model systems --
|g 11.8.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 12.
|t GWA calculations in practice --
|t Summary --
|g 12.1.
|t The task: a summary --
|g 12.2.
|t Frequently used approximations --
|g 12.3.
|t Core and valence --
|g 12.4.
|t Different levels of self-consistency --
|g 12.5.
|t Frequency integrations --
|g 12.6.
|t GW calculations in a basis --
|g 12.7.
|t Scaling and convergence --
|g 12.8.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 13.
|t GWA calculations: illustrative results --
|t Summary --
|g 13.1.
|t From the HEG to a real semiconductor: silicon as a prototype system --
|g 13.2.
|t Materials properties in the GWA: an overview --
|g 13.3.
|t Energy levels in finite and low-dimensional systems --
|g 13.4.
|t Transition metals and their oxides --
|g 13.5.
|t GW results for the ground state --
|g 13.6.
|t A comment on temperature --
|g 13.7.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 14.
|t RPA and beyond: the Bethe-Salpeter equation --
|t Summary --
|g 14.1.
|t The two-particle correlation function and measurable quantities --
|g 14.2.
|t The two-particle correlation function: basic relations --
|g 14.3.
|t The RPA: what can it yield? --
|g 14.4.
|t Beyond the RPA: spin and frequency structure of the BSE --
|g 14.5.
|t The Bethe-Salpeter equation in the GW approximation --
|g 14.6.
|t A two-body Schrödinger equation --
|g 14.7.
|t Importance and analysis of electron-hole interaction effects --
|g 14.8.
|t Bethe-Salpeter calculations in practice --
|g 14.9.
|t Applications --
|g 14.10.
|t Extensions --
|g 14.11.
|t Linear response using Green's functions or density functionals --
|g 14.12.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 15.
|t Beyond the GW approximation --
|t Summary --
|g 15.1.
|t The need to go beyond GW: analysis and observations --
|g 15.2.
|t Iterating Hedin's equations --
|g 15.3.
|t Effects of vertex corrections --
|g 15.4.
|t The T-matrix and related approximations --
|g 15.5.
|t Beyond the T-matrix approximation: combining channels --
|g 15.6.
|t T-matrix and related approaches in practice --
|g 15.7.
|t Cumulants in electron spectroscopy --
|g 15.8.
|t Use of exact constraints --
|g 15.9.
|t Retrospective and outlook --
|t Select Further Reading --
|t Exercises --
|g 16.
|t Dynamical mean-field theory --
|t Summary --
|g 16.1.
|t Auxiliary systems and embedding in Green's function methods --
|g 16.2.
|t Overview of DMFT --
|g 16.3.
|t Expansion around an atomic limit: low energy scales and strong temperature dependence --
|g 16.4.
|t Background for mean-field theories and auxiliary systems --
|g 16.5.
|t Dynamical mean-field equations --
|g 16.6.
|t Self-energy functional and variational equations --
|g 16.7.
|t Static properties and density matrix embedding --
|g 16.8.
|t Single-site DMFA in a two-site model --
|g 16.9.
|t The Mott transition in infinite dimensions --
|g 16.10.
|t Hybridized bands and consequences for the Mott transition --
|g 16.11.
|t Interacting bands and spin transitions --
|g 16.12.
|t Wrap-up --
|t Select Further Reading --
|t Exercises
|
505 |
0 |
0 |
|g --
|g 17.
|t Beyond the single-site approximation in DMFT --
|t Summary --
|g 17.1.
|t Supercells and clusters --
|g 17.2.
|t Cellular DMFA --
|g 17.3.
|t Dynamic cluster approximation --
|g 17.4.
|t Variational cluster and nested cluster approximations --
|g 17.5.
|t Extended DMFT and auxiliary bosons --
|g 17.6.
|t Results for Hubbard models in one, two, and three dimensions --
|g 17.7.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 18.
|t Solvers for embedded systems --
|t Summary --
|g 18.1.
|t The problem(s) to be solved --
|g 18.2.
|t Exact diagonalization and related methods --
|g 18.3.
|t Path-integral formulation in terms of the action --
|g 18.4.
|t Auxiliary-field methods and the Hirsch-Fye algorithm --
|g 18.5.
|t CTQMC: expansion in the interaction --
|g 18.6.
|t CTQMC: expansion in the hybridization --
|g 18.7.
|t Dynamical interactions in CTQMC --
|g 18.8.
|t Other methods --
|g 18.9.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 19.
|t Characteristic hamiltonians for solids with d and f states --
|t Summary --
|g 19.1.
|t Transition elements: atomic-like behavior and local moments --
|g 19.2.
|t Hamiltonian in a localized basis: crystal fields, bands, Mott-Hubbard vs. charge transfer --
|g 19.3.
|t Effective interaction hamiltonian --
|g 19.4.
|t Identification of localized orbitals --
|g 19.5.
|t Combining DMFT and DFT --
|g 19.6.
|t Static mean-field approximations: DFT+U, etc. --
|g 19.7.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 20.
|t Examples of calculations for solids with d and f states --
|t Summary --
|g 20.1.
|t Kondo effect in realistic multi-orbital problems --
|g 20.2.
|t Lanthanides -- magnetism, volume collapse, heavy fermions, mixed valence, etc. --
|g 20.3.
|t Actinides -- transition from band to localized --
|g 20.4.
|t Transition metals -- local moments and ferromagnetism: Fe and Ni
|
650 |
|
0 |
|a Electronic structure.
|0 http://id.loc.gov/authorities/subjects/sh85042372
|
650 |
|
0 |
|a Electrons.
|0 http://id.loc.gov/authorities/subjects/sh85042423
|
650 |
|
0 |
|a Many-body problem.
|0 http://id.loc.gov/authorities/subjects/sh85080793
|
650 |
|
0 |
|a Perturbation (Quantum dynamics)
|0 http://id.loc.gov/authorities/subjects/sh85100182
|
650 |
|
0 |
|a Quantum theory.
|0 http://id.loc.gov/authorities/subjects/sh85109469
|
650 |
|
0 |
|a Monte Carlo method.
|0 http://id.loc.gov/authorities/subjects/sh85087032
|
650 |
|
7 |
|a Electronic structure.
|2 fast
|0 (OCoLC)fst00907474
|
650 |
|
7 |
|a Electrons.
|2 fast
|0 (OCoLC)fst00907642
|
650 |
|
7 |
|a Many-body problem.
|2 fast
|0 (OCoLC)fst01008543
|
650 |
|
7 |
|a Monte Carlo method.
|2 fast
|0 (OCoLC)fst01025819
|
650 |
|
7 |
|a Perturbation (Quantum dynamics)
|2 fast
|0 (OCoLC)fst01058907
|
650 |
|
7 |
|a Quantum theory.
|2 fast
|0 (OCoLC)fst01085128
|
700 |
1 |
|
|a Reining, Lucia,
|e author.
|0 http://id.loc.gov/authorities/names/no2015152984
|1 http://viaf.org/viaf/122145003302261301860
|
700 |
1 |
|
|a Ceperley, David,
|e author.
|0 http://id.loc.gov/authorities/names/n85006488
|1 http://viaf.org/viaf/1428602
|
903 |
|
|
|a HeVa
|
880 |
0 |
0 |
|6 505-00
|a Contents note continued:
|g 20.5.
|t Transition metal oxides: overview --
|g 20.6.
|t Vanadium compounds and metal-insulator transitions --
|g 20.7.
|t NiO - charge-transfer insulator, antiferromagnetism, and doping --
|g 20.8.
|t MnO - metal-insulator and spin transitions --
|g 20.9.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 21.
|t Combining Green's functions approaches: an outlook --
|t Summary --
|g 21.1.
|t Taking advantage of different Green's function methods --
|g 21.2.
|t Partitioning the system --
|g 21.3.
|t Combining different levels of diagrammatic approaches --
|g 21.4.
|t Combining Green's function methods: GW and DMFT --
|g 21.5.
|t Dynamical interactions and constrained RPA --
|g 21.6.
|t Consequences of dynamical interactions --
|g 21.7.
|t Diagrammatic extensions: dynamical vertex approximation and dual fermions --
|g 21.8.
|t Wrap-up --
|t Select Further Reading --
|t Exercises --
|g 22.
|t Introduction to stochastic methods --
|t Summary --
|g 22.1.
|t Simulations --
|g 22.2.
|t Random walks and Markov chains --
|g 22.3.
|t The Metropolis Monte Carlo method --
|g 22.4.
|t Computing error bars --
|g 22.5.
|t The "heat bath" algorithm --
|g 22.6.
|t Remarks --
|t Select Further Reading --
|t Exercises --
|g 23.
|t Variational Monte Carlo --
|t Summary --
|g 23.1.
|t Details of the variational Monte Carlo method --
|g 23.2.
|t Optimizing trial wavefunctions --
|g 23.3.
|t The momentum distribution and single-particle density matrix --
|g 23.4.
|t Non-local pseudopotentials --
|g 23.5.
|t Finite-size effects --
|g 23.6.
|t VMC for lattice models --
|g 23.7.
|t Excitations and orthogonality --
|g 23.8.
|t Strengths and weaknesses of VMC --
|t Select Further Reading --
|t Exercises --
|g 24.
|t Projector quantum Monte Carlo --
|t Summary --
|g 24.1.
|t Types and properties of projectors --
|g 24.2.
|t The diffusion Monte Carlo method --
|g 24.3.
|t Exact fermion methods: the sign or phase problem --
|g 24.4.
|t The fixed-node and fixed-phase methods --
|g 24.5.
|t Mixed estimators, exact estimators, and the overlap --
|g 24.6.
|t Non-local pseudopotentials in PMC --
|g 24.7.
|t Projector auxiliary-field quantum Monte Carlo methods --
|g 24.8.
|t Applications of projector MC --
|g 24.9.
|t The pluses and minuses of projector MC --
|t Select Further Reading --
|t Exercises --
|g 25.
|t Path-integral Monte Carlo --
|t Summary --
|g 25.1.
|t The path-integral representation --
|g 25.2.
|t Exchange of localized electrons --
|g 25.3.
|t Quantum statistics and PIMC --
|g 25.4.
|t Ground-state path integrals (GSPI) --
|g 25.5.
|t Finite-temperature QMC for the Hubbard model --
|g 25.6.
|t Estimating real-time correlation functions --
|g 25.7.
|t Correlation-function QMC for excitations --
|t Select Further Reading --
|t Exercises --
|g 26.
|t Concluding remarks --
|t Appendix A Second quantization --
|t Summary --
|g A.1.
|t First quantization --
|g A.2.
|t Second quantization --
|t Select Further Reading --
|t Appendix B Pictures --
|t Summary --
|g B.1.
|t Schrödinger picture --
|g B.2.
|t Heisenberg picture --
|g B.3.
|t Interaction picture --
|t Select Further Reading --
|t Exercises --
|t Appendix C Green's functions: general properties --
|t Summary --
|g C.1.
|t Green's functions for differential equations --
|g C.2.
|t Fourier transforms and spectral representations --
|g C.3.
|t Frequency integrals --
|g C.4.
|t From many-body to few-body Green's functions --
|g C.5.
|t The thermodynamic limit --
|t Select Further Reading --
|t Exercises --
|t Appendix D Matsubara formulation for Green's functions for Tnot=to0 --
|t Summary --
|g D.1.
|t Green's functions at Tnot=to 0: Matsubara frequencies --
|g D.2.
|t Analytic properties in the complex-frequency plane --
|g D.3.
|t Illustration of the structure of G°(iwn) and G°(τ) --
|g D.4.
|t The grand potential Ω --
|g D.5.
|t Transformation to real frequencies --
|t Select Further Reading --
|t Exercises --
|t Appendix E Time ordering, contours, and non-equilibrium --
|t Summary --
|g E.1.
|t The task --
|g E.2.
|t The contour interpretation --
|g E.3.
|t Contours for all purposes --
|t Select Further Reading --
|t Appendix F Hedin's equations in a basis --
|t Summary --
|g F.1.
|t Generalization of Hedin's equations --
|g F.2.
|t Hedin's equations in a basis --
|t Select Further Reading --
|t Appendix G Unique solutions in Green's function theory --
|t Summary --
|g G.1.
|t Which G°Boundary conditions in time --
|g G.2.
|t Which GSelf-consistent Dyson equations --
|g G.3.
|t Convergence of perturbation expansions and consequences --
|t Select Further Reading --
|t Exercises --
|t Appendix H Properties of functionals --
|t Summary --
|g H.1.
|t Functionals and functional equations --
|g H.2.
|t Legendre transformations and invertibility --
|g H.3.
|t Examples of functionals for the total energy in Kohn-Sham DFT calculations --
|g H.4.
|t Free-energy functionals for spin systems and proof of invertibility --
|g H.5.
|t Extension to quantum spins and density functional theory --
|t Select Further Reading --
|t Exercises --
|t Appendix I Auxiliary systems and constrained search --
|t Summary --
|g I.1.
|t Auxiliary system to reproduce selected quantities --
|g I.2.
|t Constrained search with an interacting auxiliary system --
|t Exercises --
|t Appendix J Derivation of the Luttinger theorem --
|t Summary --
|t Select Further Reading --
|t Exercises --
|t Appendix K Gutzwiller and Hubbard approaches --
|t Summary --
|g K.1.
|t Gutzwiller approach in terms of the wavefunction --
|g K.2.
|t Hubbard approach in terms of the Green's function --
|g K.3.
|t Two scenarios for the Mott transition --
|t Select Further Reading --
|t Exercises.
|
929 |
|
|
|a cat
|
999 |
f |
f |
|i b65e9de6-cb18-59cf-895b-e01afba04ca9
|s 6730fe8b-79be-5f50-93c6-64575c510441
|
928 |
|
|
|t Library of Congress classification
|a QC176.8.E4 M368 2016
|l JCL
|c JCL-Sci
|i 9520881
|
927 |
|
|
|t Library of Congress classification
|a QC176.8.E4 M368 2016
|l JCL
|c JCL-Sci
|e MAYB
|e CRERAR
|b 113658740
|i 9767331
|