Principles and practice of structural equation modeling /
Saved in:
Author / Creator: | Kline, Rex B. |
---|---|
Imprint: | New York : Guilford Press, ©1998. |
Description: | xiv, 354 pages : illustrations ; 24 cm. |
Language: | English |
Series: | Methodology in the social sciences Methodology in the social sciences. |
Subject: | |
Format: | Print Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11062521 |
Table of Contents:
- I. Fundamental Concepts
- 1. Introduction
- 1.1. Plan of the Book
- 1.2. Notation
- 1.3. Computer Programs for SEM
- 1.4. Statistical Journeys
- 1.5. Family Values
- 1.6. Extend Latent Variable Families
- 1.7. Family History
- 1.8. Internet Resources
- 1.9. Summary
- 2. Basic Statistical Concepts: I. Correlation and Regression
- 2.1. Standardized and Unstandardized Variables
- 2.2. Bivariate Correlation and Regression
- 2.3. Partial Correlation
- 2.4. Multiple Correlation and Regression
- 2.5. Statistical Tests
- 2.6. Bootstrapping
- 2.7. Summary
- 2.8. Recommended Readings
- 3. Basic Statistical Concepts
- II. Data Preparation and Screening
- 3.1. Data Preparation
- 3.2. Data Screening
- 3.3. Score Reliability and Validity
- 3.4. Summary
- 3.5. Recommended Readings
- 4. Core SEM Techniques and Software
- 4.1. Steps of SEM
- 4.2. Path Analysis: A Structural Model of Illness Factors
- 4.3. Confirmatory Factor Analysis: A Measurement Model of Arousal
- 4.4. A Structural Regression Model of Family Risk and Child Adjustment
- 4.5. Extensions
- 4.6. SEM Computer Programs
- 4.7. Summary
- 4.8. Recommended Readings II. Core SEM Techniques
- 5. Introduction to Path Analysis
- 5.1. Correlation and Causation
- 5.2. Specification of Path Models
- 5.3. Types of Path Models
- 5.4. Principles of Identification
- 5.5. Sample Size
- 5.6. Overview of Estimation Options
- 5.7. Maximum Likelihood Estimation
- 5.8. Other Issues
- 5.9. Summary
- 5.10. Recommended Readings
- Appendix 5.a. Recommendations for Start Values
- Appendix 5.b. Effect Size Interpretation of Standardized Path Coefficients
- 6. Details of Path Analysis
- 6.1. Detailed Analysis of a Recursive Model of Illness Factors
- 6.2. Assessing Model Fit
- 6.3. Testing Hierarchical Models
- 6.4. Comparing Nonhierarchical Models
- 6.5. Equivalent Models
- 6.6. Power Analysis
- 6.7. Other Estimation Options
- 6.8. Summary
- 6.9Recommended Readings.
- Appendix 6.a. Statistical Tests for Indirect Effects in Recursive Path Models
- Appendix 6.b. Amos Basic Syntax
- Appendix 6.c. Estimation of Recursive Path Models with Multiple Regression
- 7. Measurement Models and Confirmatory Factor Analysis
- 7.1. Specification of CFA Models
- 7.2. Identification of CFA Models
- 7.3. Naming and Reification Fallacies
- 7.4. Estimation of CFA Models
- 7.5. Testing CFA Models
- 7.6. Equivalent CFA Models
- 7.7. Analyzing Indicators with Non-Normal Distributions
- 7.8. Special Types of CFA Models
- 7.9. Other Issues
- 7.10. Summary
- 7.11. Recommended Readings
- Appendix 7.a. Recommendations for Start Values
- Appendix 7.b. CALIS Syntax
- 8. Models with Structural and Measurement Components
- 8.1. Characteristics of SR Models
- 8.2. Analysis of SR Models
- 8.3. Estimation of SR Models
- 8.4. A Detailed Example
- 8.5. Other Issues
- 8.6. Summary
- 8.7. Recommended Readings
- Appendix 8.a. SEPATH Syntax
- III. Advanced Techniques, Avoiding Mistakes
- 9. Nonrecursive Structural Models
- 9.1. Specification of Nonrecursive Models
- 9.2. Identification of Nonrecursive Models
- 9.3. Estimation of Nonrecursive Models
- 9.4. Examples
- 9.5. Summary
- 9.6. Recommended Readings
- Appendix 9.a. EQS Syntax
- 10. Mean Structures and Latent Growth Models
- 10.1. Introduction to Mean Structures
- 10.2. Identification of Mean Structures
- 10.3. Estimation of Mean Structures
- 10.4. Structured Means in Measurement Models
- 10.5. Latent Growth Models
- 10.6. Extensions
- 10.7. Summary
- 10.8. Recommended Readings
- Appendix 10.a. Mplus Syntax
- 11. Multiple-Sample SEM
- 11.1. Rationale of Multiple-Sample SEM
- 11.2. Multiple-Sample Path Analysis
- 11.3. Multiple-Sample CFA
- 11.4. Extensions
- 11.5. MIMIC Models as an Alternative to Multiple-Sample Analysis
- 11.6. Summary
- 11.7. Recommended Readings
- Appendix 11.a. Lisrel Simplis Syntax
- 12. How to Fool Yourself with SEM
- 12.1. Tripping at t