Continuous bounded cohomology of locally compact groups /

Saved in:
Bibliographic Details
Author / Creator:Monod, Nicolas, 1973-
Imprint:Berlin ; New York : Springer, ©2001.
Description:1 online resource (ix, 214 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1758
Lecture notes in mathematics (Springer-Verlag) ; 1758.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11064932
Hidden Bibliographic Details
ISBN:9783540449621
3540449620
3540420541
9783540420545
Notes:Includes bibliographical references (pages 203-209) and index.
Summary:Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmller spaces. A special effort has been made to provide detailed proofs or references in quite some generality.
Other form:Print version: Monod, Nicolas, 1973- Continuous bounded cohomology of locally compact groups. Berlin ; New York : Springer, ©2001 3540420541

MARC

LEADER 00000cam a22000004a 4500
001 11064932
005 20170630050058.5
006 m o d
007 cr |n|||||||||
008 010425s2001 gw ob 001 0 eng c
003 ICU
040 |a COO  |b eng  |e pn  |c COO  |d EYM  |d SPLNM  |d GW5XE  |d OCLCQ  |d YNG  |d CSU  |d DKDLA  |d OCLCO  |d OCLCQ  |d GW5XE  |d OCLCF  |d OCLCQ  |d YDX 
019 |a 644339851  |a 771199793  |a 851775168 
020 |a 9783540449621  |q (electronic bk.) 
020 |a 3540449620  |q (electronic bk.) 
020 |z 3540420541 
020 |z 9783540420545 
035 |a (OCoLC)50031645  |z (OCoLC)644339851  |z (OCoLC)771199793  |z (OCoLC)851775168 
042 |a pcc 
050 4 |a QA3  |b .L28 no. 1758  |a QA387 
049 |a MAIN 
100 1 |a Monod, Nicolas,  |d 1973-  |0 http://id.loc.gov/authorities/names/n2001006796  |1 http://viaf.org/viaf/15006213 
245 1 0 |a Continuous bounded cohomology of locally compact groups /  |c Nicolas Monod. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2001. 
300 |a 1 online resource (ix, 214 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1758 
504 |a Includes bibliographical references (pages 203-209) and index. 
505 0 |a Introduction; Chapter I: Banach modules, $Linfty$ spaces: Banach modules -- $L^/infty$ spaces -- Integration. Chapter II: Relative injectivity and amenable actions: Relative injectivity -- Amenability and amenable actions. Chapter III: Definition and characterization of continuous bounded cohomology: A naive definition -- The functorial characterization -- Functoriality -- Continuous cohomology and the comparison map. Chapter IV: Cohomological techniques: General techniques -- Double ergodicity -- Hochschild-Serre spectral Sequence. Chapter V: Towards applications: Interpretations of $(/rm EH)^2 (/rm cb)$ -- General irreducible lattices. Bibliography. Index. 
520 |a Recent research has repeatedly led to connections between important rigidity questions and bounded cohomology. However, the latter has remained by and large intractable. This monograph introduces the functorial study of the continuous bounded cohomology for topological groups, with coefficients in Banach modules. The powerful techniques of this more general theory have successfully solved a number of the original problems in bounded cohomology. As applications, one obtains, in particular, rigidity results for actions on the circle, for representations on complex hyperbolic spaces and on Teichmller spaces. A special effort has been made to provide detailed proofs or references in quite some generality. 
650 0 |a Locally compact groups.  |0 http://id.loc.gov/authorities/subjects/sh85077962 
650 0 |a Homology theory.  |0 http://id.loc.gov/authorities/subjects/sh85061770 
650 7 |a Homology theory.  |2 fast  |0 (OCoLC)fst00959720 
650 7 |a Locally compact groups.  |2 fast  |0 (OCoLC)fst01001672 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Monod, Nicolas, 1973-  |t Continuous bounded cohomology of locally compact groups.  |d Berlin ; New York : Springer, ©2001  |z 3540420541  |w (DLC) 2001032279  |w (OCoLC)46937548 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1758. 
856 4 0 |u http://link.springer.com/10.1007/b80626  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 8a31a781-c29f-5126-a02a-4a5705b69615  |s e83d16e3-b84b-59e4-9389-1c793c1e1135 
928 |t Library of Congress classification  |a QA3 .L28 no. 1758  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/b80626  |z SpringerLink  |g ebooks  |i 9872848