The principle of least action in geometry and dynamics /

Saved in:
Bibliographic Details
Author / Creator:Siburg, Karl Friedrich.
Imprint:Berlin ; New York : Springer-Verlag, ©2004.
Description:1 online resource (xii, 128 pages) : illustrations.
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1844
Lecture notes in mathematics (Springer-Verlag) ; 1844.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11065344
Hidden Bibliographic Details
ISBN:3540219447
9783540219446
9783540409854
3540409858
Notes:Includes bibliographical references and index.
Print version record.
Summary:New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather{u2019}s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.
Other form:Print version: Siburg, Karl Friedrich. Principle of least action in geometry and dynamics. Berlin ; New York : Springer, ©2004 3540219447

MARC

LEADER 00000cam a2200000Ia 4500
001 11065344
005 20170630045349.2
006 m o d
007 cr |||||||||||
008 040618s2004 gw a ob 101 0 eng d
003 ICU
040 |a HNK  |b eng  |e pn  |c HNK  |d OCL  |d SPLNM  |d COO  |d GW5XE  |d QCL  |d YNG  |d OCLCQ  |d DKDLA  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d AZU  |d OCLCQ  |d TXI  |d ESU 
019 |a 166469925  |a 729900652  |a 769231745 
020 |a 3540219447  |q (pbk.) 
020 |a 9783540219446  |q (pbk.) 
020 |a 9783540409854 
020 |a 3540409858 
035 |a (OCoLC)55670694  |z (OCoLC)166469925  |z (OCoLC)729900652  |z (OCoLC)769231745 
050 4 |a QA649  |b .S52 2004 
049 |a MAIN 
100 1 |a Siburg, Karl Friedrich.  |0 http://id.loc.gov/authorities/names/no2004078607  |1 http://viaf.org/viaf/12551417 
245 1 4 |a The principle of least action in geometry and dynamics /  |c Karl Friedrich Siburg. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©2004. 
300 |a 1 online resource (xii, 128 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1844 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Aubry-Mather Theory -- Mather-Mané Theory -- The Minimal Action and Convex Billiards -- The Minimal Action Near Fixed Points and Invariant Tori -- The Minimal Action and Hofer's Geometry -- The Minimal Action and Symplectic Geometry -- References -- Index. 
520 |a New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather{u2019}s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book. 
650 0 |a Symplectic manifolds.  |0 http://id.loc.gov/authorities/subjects/sh85131553 
650 0 |a Geometry, Differential.  |0 http://id.loc.gov/authorities/subjects/sh85054146 
650 7 |a Geometry, Differential.  |2 fast  |0 (OCoLC)fst00940919 
650 7 |a Symplectic manifolds.  |2 fast  |0 (OCoLC)fst01140991 
776 0 8 |i Print version:  |a Siburg, Karl Friedrich.  |t Principle of least action in geometry and dynamics.  |d Berlin ; New York : Springer, ©2004  |z 3540219447  |w (DLC) 2004104313  |w (OCoLC)55514606 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1844. 
856 4 0 |u http://link.springer.com/10.1007/b97327  |y SpringerLink 
856 4 0 |u http://link.springer.com/10.1007/978-3-540-40985-4  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 9ddd7086-278f-55b9-bf15-a79d30959d53  |s 93736245-4340-5427-8108-97476da4e92a 
928 |t Library of Congress classification  |a QA649 .S52 2004  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/b97327  |z SpringerLink  |g ebooks  |i 9873263 
928 |t Library of Congress classification  |a QA649 .S52 2004  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-540-40985-4  |z SpringerLink  |g ebooks  |i 9873264