Understanding planning tasks : domain complexity and heuristic decomposition /
Saved in:
Author / Creator: | Helmert, Malte. |
---|---|
Edition: | 1st ed. |
Imprint: | Berlin ; New York : Springer, ©2008. |
Description: | 1 online resource (xiv, 270 pages) : illustrations. |
Language: | English |
Series: | LNCS sublibrary. SL 7, Artificial intelligence Lecture notes in computer science, 0302-9743 ; 4929. Lecture notes in artificial intelligence LNCS sublibrary. SL 7, Artificial intelligence. Lecture notes in computer science ; 4929. Lecture notes in computer science. Lecture notes in artificial intelligence. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11066796 |
Table of Contents:
- Part I. Planning Benchmarks
- 1. The Role of Benchmarks
- 1.1. Evaluating Planner Performance
- 1.1.1. Worst-Case Evaluation
- 1.1.2. Average-Case Evaluation
- 1.2. Planning Benchmarks Are Important
- 1.3. Theoretical Analyses of Planning Benchmarks
- 1.3.1. Why Theoretical Analyses Are Useful
- 1.3.2. Published Results on Benchmark Complexity
- 1.4. Standard Benchmarks
- 1.5. Summary and Overview
- 2. Defining Planning Domains
- 2.1. Optimization Problems
- 2.1.1. Minimization Problems
- 2.1.2. Approximation Algorithms
- 2.1.3. Approximation Classes
- 2.1.4. Reductions
- 2.2. Formalizing Planning Domains
- 2.3. General Results and Reductions
- 2.3.1. Upper Bounds
- 2.3.2. Shortest Plan Length
- 2.3.3. Approximation Classes of Limited Interest
- 2.3.4. Relating Planning and (Bounded) Plan Existence
- 2.3.5. Generalization and Specialization
- 3. The Benchmark Suite
- 3.1. Defining the Competition Domains
- 3.2. The Benchmark Suite
- 3.2.1. IPC1 Domains
- 3.2.2. IPC2 Domains
- 3.2.3. IPC3 Domains
- 3.2.4. IPC4 Domains
- 3.3. Domains and Domain Families
- 4. Transportation and Route Planning
- 4.1. Transport and Route
- 4.1.1. The Transport Domain
- 4.1.2. The Route Domain
- 4.1.3. Special Cases and Hierarchy
- 4.2. General Results
- 4.3. Plan Existence
- 4.4. Hardness of Optimization
- 4.5. Constant Factor Approximation
- 4.6. Hardness of Constant Factor Approximation
- 4.7. Summary
- 4.8. Beyond Transport and Route
- 5. IPC Domains: Transportation and Route Planning
- 5.1. Gripper
- 5.2. Mystery and Mystery Prime
- 5.3. Logistics
- 5.4. Zenotravel
- 5.5. Depots
- 5.6. Miconic-10
- 5.7. Rovers
- 5.8. Grid
- 5.9. Driverlog
- 5.10. Airport
- 5.11. Summary
- 6. IPC Domains: Others
- 6.1. Assembly
- 6.2. Blocksworld
- 6.3. Freecell
- 6.4. Movie
- 6.5. Pipesworld
- 6.6. Promela
- 6.7. PSR
- 6.8. Satellite
- 6.9. Schedule
- 6.10. Summary
- 7. Conclusions
- 7.1. Ten Conclusions
- 7.2. Going Further
- Part II. Fast Downward
- 8. Solving Planning Tasks Hierarchically
- 8.1. Introduction
- 8.2. Related Work
- 8.2.1. Causal Graphs and Abstraction
- 8.2.2. Causal Graphs and Unary STRIPS Operators
- 8.2.3. Multi-Valued Planning Tasks
- 8.3. Architecture and Overview
- 9. Translation
- 9.1. PDDL and Multi-valued Planning Tasks
- 9.2. Translation Overview
- 9.3. Normalization
- 9.3.1. Compiling Away Types
- 9.3.2. Simplifying Conditions
- 9.3.3. Simplifying Effects
- 9.3.4. Normalization Result
- 9.4. Invariant Synthesis
- 9.4.1. Initial Candidates
- 9.4.2. Proving Invariance
- 9.4.3. Refining Failed Candidates
- 9.4.4. Examples
- 9.4.5. Related Work
- 9.5. Grounding
- 9.5.1. Overview of Horn Exploration
- 9.5.2. Generating the Logic Program
- 9.5.3. Translating the Logic Program to Normal Form
- 9.5.4. Computing the Canonical Model
- 9.5.5. Axiom and Operator Instantiation
- 9.6. Multi-valued Planning Task Generation
- 9.6.1. Variable Selection
- 9.6.2. Converting the Initial State
- 9.6.3. Converting Operator Effects
- 9.6.4. Converting Conditions
- 9.6.5. Computing Axiom Layers
- 9.6.6. Generating the Output
- 9.7. Performance Notes
- 9.7.1. Relative Performance Compared to MIPS Translator
- 9.7.2. Absolute Performance
- 10. Knowledge Compilation
- 10.1. Overview
- 10.2. Domain Transition Graphs
- 10.3. Causal Graphs
- 10.3.1. Acyclic Causal Graphs
- 10.3.2. Generating and Pruning Causal Graphs
- 10.3.3. Causal Graph Examples
- 10.4. Successor Generators and Axiom Evaluators
- 10.4.1. Successor Generators
- 10.4.2. Axiom Evaluators
- 11. Search
- 11.1. Overview
- 11.2. The Causal Graph Heuristic
- 11.2.1. Conceptual View of the Causal Graph Heurstic
- 11.2.2. Computation of the Causal Graph Heuristic
- 11.2.3. States with Infinite Heuristic Value
- 11.2.4. Helpful Transitions
- 11.3. The FF Heuristic
- 11.4. Greedy Best-First Search in Fast Downward
- 11.4.1. Preferred Operators
- 11.4.2. Deferred Heuristic Evaluation
- 11.5. Multi-heuristic Best-First Search
- 11.6. Focused Iterative-Broadening Search
- 12. Experiments
- 12.1. Experiment Design
- 12.1.1. Benchmark Set
- 12.1.2. Experiment Setup
- 12.1.3. Translation and Knowledge Compilation vs. Search
- 12.2. Strips Domains from IPC1-3
- 12.3. ADL Domains from IPC1-3
- 12.4. Domains from IPC4
- 12.5. Conclusions from the Experiment
- 13. Discussion
- 13.1. Summary
- 13.2. Major Contributors
- 13.2.1. Multi-valued Representations
- 13.2.2. Task Decomposition Heuristics
- 13.3. Minor Contributions
- 13.4. Going Further
- References
- Index