Stabilization of nonlinear systems using receding-horizon control schemes : a parametrized approach for fast systems /

Saved in:
Bibliographic Details
Author / Creator:Alamir, Mazen.
Imprint:London : Springer, ©2006.
Description:1 online resource (xvii, 308 pages) : illustrations.
Language:English
Series:Lecture notes in control and information sciences ; 339
Lecture notes in control and information sciences ; 339.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11068739
Hidden Bibliographic Details
ISBN:9781846284717
1846284716
1846284708
9781846284700
Notes:Includes bibliographical references (pages 301-306) and index.
Print version record.
Summary:While conceptually elegant, the generic formulations of nonlinear model predictive control are not ready to use for the stabilization of fast systems. Dr. Alamir presents a successful approach to this problem based on a co-operation between structural considerations and on-line optimization. The balance between structural and optimization aspects of the method is dependent on the system being considered so the many examples aim to transmit a mode of thought rather than a ready-to-use recipe; they include: - double inverted pendulum; - non-holonomic systems in chained form; - snake board; - missile in intercept mission; - polymerization reactor; - walking robot; - under-actuated satellite in failure mode. In addition, the basic stability results under receding horizon control schemes are revisited using a sampled-time, low-dimensional control parameterization that is mandatory for fast computation and some novel formulations are proposed which offer promising directions for future research.
Other form:Print version: Alamir, Mazen. Stabilization of nonlinear systems using receding-horizon control schemes. London : Springer, ©2006 1846284708 9781846284700

MARC

LEADER 00000cam a2200000Ia 4500
001 11068739
005 20170630044657.9
006 m o d
007 cr cn|||||||||
008 081017s2006 enka ob 001 0 eng d
003 ICU
010 |a  2006926659 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OCLCQ  |d COD  |d COO  |d CEF  |d UAB  |d E7B  |d UBC  |d OCLCQ  |d IDEBK  |d OCLCQ  |d YNG  |d OCLCO  |d OCLCQ  |d A7U  |d OCLCQ  |d OCLCF  |d BEDGE  |d OCLCQ  |d OCLCO  |d YDXCP  |d NUI  |d SLY  |d OCLCO  |d OCLCQ  |d OCLCO  |d EBLCP  |d OCLCQ  |d VT2  |d Z5A 
015 |a GBA640934  |2 bnb 
016 7 |a 013448177  |2 Uk 
019 |a 73526694  |a 228385381  |a 488912191  |a 607333215  |a 648308971  |a 729900863  |a 880111223  |a 985045181 
020 |a 9781846284717 
020 |a 1846284716 
020 |a 1846284708  |q (pbk.) 
020 |a 9781846284700  |q (pbk.) 
035 |a (OCoLC)262691387  |z (OCoLC)73526694  |z (OCoLC)228385381  |z (OCoLC)488912191  |z (OCoLC)607333215  |z (OCoLC)648308971  |z (OCoLC)729900863  |z (OCoLC)880111223  |z (OCoLC)985045181 
037 |a 978-1-84628-470-0  |b Springer  |n http://www.springerlink.com 
050 4 |a TJ213  |b .A35 2006eb 
084 |a O231. 2  |2 clc 
049 |a MAIN 
100 1 |a Alamir, Mazen.  |0 http://id.loc.gov/authorities/names/nb2006020315  |1 http://viaf.org/viaf/60238416 
245 1 0 |a Stabilization of nonlinear systems using receding-horizon control schemes :  |b a parametrized approach for fast systems /  |c Mazen Alamir. 
260 |a London :  |b Springer,  |c ©2006. 
300 |a 1 online resource (xvii, 308 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in control and information sciences ;  |v 339 
504 |a Includes bibliographical references (pages 301-306) and index. 
505 0 |a Cover -- Contents -- Part I: Generic Framework -- 1 Definitions and Notation -- 1.1 System-Related Definitions -- 1.2 Open-Loop-Control-Related Definitions -- 1.3 Open-Loop-Trajectories-Related Definitions -- 1.4 Further Notation -- 2 The Receding-Horizon State Feedback -- 2.1 The Strategy Most Commonly Used by Humans -- 2.2 The Ingredients of a Receding-Horizon Control Scheme -- 2.3 The Receding-Horizon State Feedback -- 2.4 Existence of Solutions -- 2.5 The Stability Issue -- 3 Stabilizing Schemes with Final Equality Constraint on the State -- 3.1 Some Assumptions and Preliminary Results -- 3.2 Fixed Prediction Horizon Formulations with Final Equality Constraint on the State -- 4 Stabilizing Formulations with Free Prediction Horizon and No Final Constraint on the State -- 4.1 Preliminary Results -- 4.2 A Contractive Free Prediction Horizon Formulation for Use in a Hybrid Scheme -- 4.3 A Contractive Self-Contained Free Final-Horizon Formulation -- 4.4 Generalization -- 5 General Stabilizing Formulations for Trivial Parametrization -- 5.1 Introduction -- 5.2 Definitions and Notation -- 5.3 Sufficient Conditions for Asymptotic Stability -- 5.4 A Quick Survey of Existing Stabilizing Formulations -- 5.5 Inverse Optimality -- 5.6 Current Issues: Distributing the Optimization over Real Time -- 6 Limit Cycles Stabilizing Receding-Horizon Formulation for a Class of Hybrid Nonlinear Systems -- 6.1 Problem Statement -- 6.2 Recall on Partial Feedback Linearization -- 6.3 The Proposed Receding-Horizon Feedback Scheme -- 6.4 Illustrative Examples -- 6.5 Conclusion -- 7 Generic Design of Dynamic State Feedback Using Receding-Horizon Schemes -- 7.1 Intuitive Presentation of the Main Idea -- 7.2 Rigorous Statement of the Dynamic State Feedback -- 7.3 Conclusion -- Part II: Application Examples -- Introduction to Part II -- 8 Swing-Up Mechanical Systems -- 8.1 Swing-Up and Stabilization of a Twin-Pendulum System -- 8.2 Swing-Up and Stabilization of a Reaction-Wheel Pendulum Under Constraints -- 8.3 Swing-Up and Stabilization of an Inverted Pendulum on a Cart -- 8.4 Swing-Up and Stabilization of a Double Inverted Pendulum on a Cart -- 8.5 Conclusion -- 9 Minimum-Time Constrained Stabilization of Nonholonomic Systems -- 9.1 Stabilisation of Nonholonomic Systems in Chained Form -- 9.2 Stabilisation of a Class of Nonholonomic Systems: Application to the Snakeboard Example -- 10 Stabilization of a Rigid Satellite in Failure Mode -- 10.1 The Model of a Satellite in Failure Mode -- 10.2 Designing Efficiently Computable Steering Trajectories -- 10.3 Numerical Experiments -- 10.4 State Feedback Definition -- 10.5 Closed-Loop Simulations -- 10.6 Conclusion -- 11 Receding-Horizon Solution to the Minimum-Interception-Time Problem -- 11.1 System Modelling and Problem Statement -- 11.2 Intuitive Presentation of the Controller Design -- 11.3 Explicit Definition of the Feedback Law -- 11.4 Simulation Results -- 11.5 Conclusion -- 12 Constrained Stabilization of a PVTOL Aircraft -- 12.1 The Model of the PVTOL Aircraft -- 12.2 Generation of Admissible Open-Loop Steering Trajectories -- 12. 
588 0 |a Print version record. 
520 |a While conceptually elegant, the generic formulations of nonlinear model predictive control are not ready to use for the stabilization of fast systems. Dr. Alamir presents a successful approach to this problem based on a co-operation between structural considerations and on-line optimization. The balance between structural and optimization aspects of the method is dependent on the system being considered so the many examples aim to transmit a mode of thought rather than a ready-to-use recipe; they include: - double inverted pendulum; - non-holonomic systems in chained form; - snake board; - missile in intercept mission; - polymerization reactor; - walking robot; - under-actuated satellite in failure mode. In addition, the basic stability results under receding horizon control schemes are revisited using a sampled-time, low-dimensional control parameterization that is mandatory for fast computation and some novel formulations are proposed which offer promising directions for future research. 
650 0 |a Nonlinear control theory.  |0 http://id.loc.gov/authorities/subjects/sh90000979 
650 0 |a Automatic control  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2007101729 
650 6 |a Commande non linéaire. 
650 6 |a Commande automatique  |x Modèles mathématiques. 
650 0 7 |a Automatic control  |x Mathematical models.  |2 cct 
650 0 7 |a Commande non linéaire.  |2 cct 
650 0 7 |a Commande automatique  |x Modèles mathématiques.  |2 cct 
650 0 7 |a Nonlinear control theory.  |2 cct 
650 7 |a Ingénierie.  |2 eclas 
650 7 |a Automatic control  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00822712 
650 7 |a Nonlinear control theory.  |2 fast  |0 (OCoLC)fst01038787 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Alamir, Mazen.  |t Stabilization of nonlinear systems using receding-horizon control schemes.  |d London : Springer, ©2006  |z 1846284708  |z 9781846284700  |w (DLC) 2006926659  |w (OCoLC)67375398 
830 0 |a Lecture notes in control and information sciences ;  |v 339. 
856 4 0 |u http://link.springer.com/10.1007/978-1-84628-471-7  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 087ce50e-82b7-53ed-ba24-9876afd2cf06  |s 018fd865-5845-5b97-a778-5053288407f7 
928 |t Library of Congress classification  |a TJ213 .A35 2006eb  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-1-84628-471-7  |z SpringerLink  |g ebooks  |i 9876757