Quantum coherence : from quarks to solids /

Saved in:
Bibliographic Details
Imprint:Berlin ; New York : Springer, ©2006.
Description:1 online resource (xiv, 189 pages) : illustrations (some color).
Language:English
Series:Lecture notes in physics, 0075-8450 ; 689
Lecture notes in physics ; 689.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11068762
Hidden Bibliographic Details
Other authors / contributors:Pötz, Walter.
Fabian, Jaroslav.
Hohenester, U. (Ulrich)
ISBN:9783540332053
3540332057
9783540300854
3540300856
Notes:Includes bibliographical references.
Print version record.
Summary:Quantum coherence is a phenomenon that plays a crucial role in various forms of matter. The thriving field of quantum information, as well as unconventional approaches to use mesoscopic systems in future optoelectronic devices, provide the exciting background for this set of lectures. The lectures originate from the well-known Schladming Winter Schools and are carefully edited so as to address a broad readership ranging from the beginning graduate student up to the senior scientist wanting to keep up with or to enter newly emerging fields of research.
Other form:Print version: Quantum coherence. Berlin ; New York : Springer, ©2006 3540300856
Table of Contents:
  • Entanglement, Bell Inequalities and Decoherence in Particle Physics
  • 1. Introduction
  • 1.1. Particle Physics
  • 2. QM of K-mesons
  • 2.1. Strangeness
  • 2.2. CP Violation
  • 2.3. Strangeness Oscillation
  • 2.4. Regeneration of K[subscript s]
  • 3. Analogies and Quasi-Spin
  • 4. Time Evolution - Unitarity
  • 5. Bell Inequalities for Spin-[fraction12]Particles
  • 6. Bell Inequalities for K-mesons
  • 6.1. Analogies and Differences
  • 6.2. Bell-CHSH Inequality - General Form
  • 6.3. Bell Inequality for Time Variation
  • 6.4. Bell Inequality for Quasi-Spin States - CP Violation
  • 7. Decoherence in Entangled K[superscript 0]K[superscript 0] System
  • 7.1. Density Matrix
  • 7.2. Model
  • 7.3. Entangled Kaons
  • 7.4. Measurement
  • 7.5. Experiment
  • 8. Connection to Phenomenological Model
  • 9. Entanglement Loss - Decoherence
  • 9.1. Von Neumann Entropy
  • 9.2. Separability
  • 9.3. Entanglement of Formation and Concurrence
  • 10. Outlook
  • References
  • Quantum Gates and Decoherence
  • 1. Introduction
  • 1.1. Why Quantum Information Processing?
  • 1.2. Quantum Gates vs. Classical Gates
  • 2. Atomic Realisation - Atom Chips and the Mott Transition in Optical Lattices
  • 2.1. Bose-Einstein Condensates and the Mott Transition
  • 2.2. Quantum Computation with a 1D Optical Lattice
  • 2.3. Experimental Realization with Atom Chips
  • 3. Photonic Realisation - Passive Linear Optics and Projective Measurements
  • 3.1. Qubit Encoding and Single-Qubit Operations
  • 3.2. Measurement-Induced Nonlinearities
  • 3.3. Construction of Simple Quantum Gates
  • 3.4. Multi-Mode Gates
  • 3.5. Conditional Dynamics and Scaling of Success Probabilities
  • 4. Decoherence Mechanisms - QED in Causal Dielectric Media
  • 4.1. Decoherence Mechanisms Affecting Atoms and Photons
  • 4.2. Field Quantisation in Causal Media
  • 4.3. Thermally Induced Spin Flips Near Metallic Wires
  • 4.4. Imperfect Passive Optical Elements
  • References
  • Spin-Based Quantum Dot Quantum Computing
  • 1. Introduction
  • 2. General Features of the Quantum Dot Quantum Computing Schemes
  • 2.1. Classification of the QC Schemes
  • 2.2. GaAs Quantum Dot QC Architecture
  • 2.3. Si Quantum Dot QC Architecture
  • 2.4. Si Donor Nuclear Spin QC Architecture
  • 2.5. Si Donor Electron Spin QC Architecture
  • 3. Electron Spin Coherence in Semiconductors
  • 3.1. Spin Decoherence Channels in Semiconductors
  • 3.2. Spectral Diffusion for Electron Spins
  • 4. Spin Manipulations and Exchange
  • 4.1. Spin Hamiltonian in a GaAs Double Quantum Dot: Coulomb Interaction and Pauli Principle
  • 4.2. Implications of Si Conduction Band Structure to Electron Exchange
  • 4.3. Single Spin Detection Schemes
  • 4.4. Approaches to Generate and Detect Electron Spin Entanglement in Quantum Dots
  • 5. Current Experimental Status
  • 5.1. Single Electron Trapping in Horizontal QDs
  • 5.2. Single Spin Detection
  • 5.3. Electron-Nuclear Spin Interaction in QDs
  • 5.4. Fabrication of Donor Arrays in Si
  • 6. Summary
  • References
  • Microscopic Theory of Coherent Semiconductor Optics
  • 1. Introduction
  • 2. Semiclassical Theory
  • 3. Time-Dependent Hartree-Fock Approximation
  • 3.1. Excitonic Linear Absorption Spectra in Different Dimensions
  • 4. Many-Body Coulomb Correlations
  • 4.1. Second-Order Born Approximation
  • 4.2. Density-Dependent Exciton Saturation and Broadening
  • 4.3. Dynamics-Controlled Truncation Scheme: Coherent x[superscript (3)]-Limit
  • 4.4. Signatures of Coherent Four-Particle Correlations in x[superscript (3)]
  • 4.5. Dynamics-Controlled Truncation Scheme: Coherent x[superscript (5)]-Limit
  • 4.6. Signatures of Coherent Four-Particle Correlations Up to x[superscript (5)]
  • 5. Conclusions and Outlook
  • References
  • Exciton and Polariton Condensation
  • 1. Introduction
  • 1.1. Coherence
  • 1.2. Condensation
  • 1.3. Bosonic Limit of Excitons
  • 2. Exciton Condensation: Standard Theory
  • 2.1. Non-Interacting Bosons
  • 2.2. Weakly Interacting Bosons
  • 2.3. Interacting Electron-Hole Pairs: Excitonic Insulator
  • 2.4. Electron-Hole Liquid
  • 3. Emission of Light
  • 4. Magnetoexcitons
  • 5. Multicomponent Condensates
  • 5.1. Phase Diagram
  • 5.2. Coherence Effects
  • 6. Polariton Condensation
  • 6.1. Polariton Dynamics
  • 6.2. Evolution of the Polariton Distribution: Macroscopic Occupation
  • 7. Polariton Laser
  • 7.1. Equation of Motion for the Density Matrix
  • 7.2. Emission Spectrum
  • 7.3. Related Work
  • 8. Summary
  • References