Quantum coherence : from quarks to solids /
Saved in:
Imprint: | Berlin ; New York : Springer, ©2006. |
---|---|
Description: | 1 online resource (xiv, 189 pages) : illustrations (some color). |
Language: | English |
Series: | Lecture notes in physics, 0075-8450 ; 689 Lecture notes in physics ; 689. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11068762 |
Table of Contents:
- Entanglement, Bell Inequalities and Decoherence in Particle Physics
- 1. Introduction
- 1.1. Particle Physics
- 2. QM of K-mesons
- 2.1. Strangeness
- 2.2. CP Violation
- 2.3. Strangeness Oscillation
- 2.4. Regeneration of K[subscript s]
- 3. Analogies and Quasi-Spin
- 4. Time Evolution - Unitarity
- 5. Bell Inequalities for Spin-[fraction12]Particles
- 6. Bell Inequalities for K-mesons
- 6.1. Analogies and Differences
- 6.2. Bell-CHSH Inequality - General Form
- 6.3. Bell Inequality for Time Variation
- 6.4. Bell Inequality for Quasi-Spin States - CP Violation
- 7. Decoherence in Entangled K[superscript 0]K[superscript 0] System
- 7.1. Density Matrix
- 7.2. Model
- 7.3. Entangled Kaons
- 7.4. Measurement
- 7.5. Experiment
- 8. Connection to Phenomenological Model
- 9. Entanglement Loss - Decoherence
- 9.1. Von Neumann Entropy
- 9.2. Separability
- 9.3. Entanglement of Formation and Concurrence
- 10. Outlook
- References
- Quantum Gates and Decoherence
- 1. Introduction
- 1.1. Why Quantum Information Processing?
- 1.2. Quantum Gates vs. Classical Gates
- 2. Atomic Realisation - Atom Chips and the Mott Transition in Optical Lattices
- 2.1. Bose-Einstein Condensates and the Mott Transition
- 2.2. Quantum Computation with a 1D Optical Lattice
- 2.3. Experimental Realization with Atom Chips
- 3. Photonic Realisation - Passive Linear Optics and Projective Measurements
- 3.1. Qubit Encoding and Single-Qubit Operations
- 3.2. Measurement-Induced Nonlinearities
- 3.3. Construction of Simple Quantum Gates
- 3.4. Multi-Mode Gates
- 3.5. Conditional Dynamics and Scaling of Success Probabilities
- 4. Decoherence Mechanisms - QED in Causal Dielectric Media
- 4.1. Decoherence Mechanisms Affecting Atoms and Photons
- 4.2. Field Quantisation in Causal Media
- 4.3. Thermally Induced Spin Flips Near Metallic Wires
- 4.4. Imperfect Passive Optical Elements
- References
- Spin-Based Quantum Dot Quantum Computing
- 1. Introduction
- 2. General Features of the Quantum Dot Quantum Computing Schemes
- 2.1. Classification of the QC Schemes
- 2.2. GaAs Quantum Dot QC Architecture
- 2.3. Si Quantum Dot QC Architecture
- 2.4. Si Donor Nuclear Spin QC Architecture
- 2.5. Si Donor Electron Spin QC Architecture
- 3. Electron Spin Coherence in Semiconductors
- 3.1. Spin Decoherence Channels in Semiconductors
- 3.2. Spectral Diffusion for Electron Spins
- 4. Spin Manipulations and Exchange
- 4.1. Spin Hamiltonian in a GaAs Double Quantum Dot: Coulomb Interaction and Pauli Principle
- 4.2. Implications of Si Conduction Band Structure to Electron Exchange
- 4.3. Single Spin Detection Schemes
- 4.4. Approaches to Generate and Detect Electron Spin Entanglement in Quantum Dots
- 5. Current Experimental Status
- 5.1. Single Electron Trapping in Horizontal QDs
- 5.2. Single Spin Detection
- 5.3. Electron-Nuclear Spin Interaction in QDs
- 5.4. Fabrication of Donor Arrays in Si
- 6. Summary
- References
- Microscopic Theory of Coherent Semiconductor Optics
- 1. Introduction
- 2. Semiclassical Theory
- 3. Time-Dependent Hartree-Fock Approximation
- 3.1. Excitonic Linear Absorption Spectra in Different Dimensions
- 4. Many-Body Coulomb Correlations
- 4.1. Second-Order Born Approximation
- 4.2. Density-Dependent Exciton Saturation and Broadening
- 4.3. Dynamics-Controlled Truncation Scheme: Coherent x[superscript (3)]-Limit
- 4.4. Signatures of Coherent Four-Particle Correlations in x[superscript (3)]
- 4.5. Dynamics-Controlled Truncation Scheme: Coherent x[superscript (5)]-Limit
- 4.6. Signatures of Coherent Four-Particle Correlations Up to x[superscript (5)]
- 5. Conclusions and Outlook
- References
- Exciton and Polariton Condensation
- 1. Introduction
- 1.1. Coherence
- 1.2. Condensation
- 1.3. Bosonic Limit of Excitons
- 2. Exciton Condensation: Standard Theory
- 2.1. Non-Interacting Bosons
- 2.2. Weakly Interacting Bosons
- 2.3. Interacting Electron-Hole Pairs: Excitonic Insulator
- 2.4. Electron-Hole Liquid
- 3. Emission of Light
- 4. Magnetoexcitons
- 5. Multicomponent Condensates
- 5.1. Phase Diagram
- 5.2. Coherence Effects
- 6. Polariton Condensation
- 6.1. Polariton Dynamics
- 6.2. Evolution of the Polariton Distribution: Macroscopic Occupation
- 7. Polariton Laser
- 7.1. Equation of Motion for the Density Matrix
- 7.2. Emission Spectrum
- 7.3. Related Work
- 8. Summary
- References