Advances in web mining and web usage analysis : 6th International Workshop on Knowledge Discovery on the Web, WebKDD 2004, Seattle, WA, USA, August 22-25, 2004 : revised selected papers /

Saved in:
Bibliographic Details
Meeting name:WebKDD 2004 (2004 : Seattle, Wash.)
Imprint:Berlin ; New York : Springer, ©2006.
Description:1 online resource (x, 187 pages) : illustrations.
Language:English
Series:LNCS sublibrary. SL 7, Artificial intelligence
Hot topics
Lecture notes in computer science ; 3932. Lecture notes in artificial intelligence
LNCS sublibrary. SL 7, Artificial intelligence.
Lecture notes in computer science ; 3932.
Lecture notes in computer science. Lecture notes in artificial intelligence.
Hot topics (Berlin, Germany)
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11069113
Hidden Bibliographic Details
Varying Form of Title:WebKDD 2004
6th International Workshop on Knowledge Discovery on the Web
Sixth International Workshop on Knowledge Discovery on the Web
International Workshop on Knowledge Discovery on the Web
Other authors / contributors:Mobasher, Bamshad.
ISBN:9783540471288
3540471286
3540471278
9783540471271
Notes:Includes bibliographical references and index.
Print version record.
Summary:TheWebisaliveenvironmentthatmanagesanddrivesawidespectrumofapp- cations in which a user may interact with a company, a governmental authority, a non-governmental organization or other non-pro?t institution or other users. User preferences and expectations, together with usage patterns, form the basis for personalized, user-friendly and business-optimal services. Key Web business metrics enabled by proper data capture and processing are essential to run an e?ective business or service. Enabling technologies include data mining, sc- able warehousing and preprocessing, sequence discovery, real time processing, document classi?cation, user modeling and quality evaluation models for them. Recipient technologies required for user pro?ling and usage patterns include recommendation systems, Web analytics applications, and application servers, coupled with content management systems and fraud detectors. Furthermore, the inherent and increasing heterogeneity of the Web has - quired Web-based applications to more e?ectively integrate a variety of types of data across multiple channels and from di?erent sources. The development and application of Web mining techniques in the context of Web content, Web usage, and Web structure data has already resulted in dramatic improvements in a variety of Web applications, from search engines, Web agents, and content management systems, to Web analytics and personalization services. A focus on techniques and architectures for more e?ective integration and mining of c- tent, usage, and structure data from di?erent sourcesis likely to leadto the next generation of more useful and more intelligent applications.
Other form:Print version: WebKDD 2004 (2004 : Seattle, Wash.). Advances in web mining and web usage analysis. Berlin ; New York : Springer, ©2006 3540471278 9783540471271

MARC

LEADER 00000cam a2200000Ia 4500
001 11069113
005 20170630045755.7
006 m o d
007 cr cn|||||||||
008 081017s2006 gw a ob 101 0 eng d
003 ICU
010 |a  2006934110 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OCLCQ  |d GZM  |d OKU  |d UAB  |d OCLCQ  |d YNG  |d CSU  |d E7B  |d OCLCO  |d OCLCQ  |d OCLCA  |d OCLCF  |d BEDGE  |d OCLCQ  |d YDXCP  |d IDEBK  |d NUI  |d SLY  |d OCLCQ  |d OCL  |d OCLCQ  |d EBLCP  |d VT2 
015 |a GBA693457  |2 bnb 
016 7 |a 981257208  |2 DE-101 
016 7 |a 013592157  |2 Uk 
019 |a 75965000  |a 316696861  |a 613649692  |a 644372247  |a 767220260  |a 785781704  |a 880103464  |a 964915395 
020 |a 9783540471288 
020 |a 3540471286 
020 |a 3540471278 
020 |a 9783540471271 
035 |a (OCoLC)262693302  |z (OCoLC)75965000  |z (OCoLC)316696861  |z (OCoLC)613649692  |z (OCoLC)644372247  |z (OCoLC)767220260  |z (OCoLC)785781704  |z (OCoLC)880103464  |z (OCoLC)964915395 
037 |a 978-3-540-47127-1  |b Springer  |n http://www.springerlink.com 
050 4 |a ZA4235  |b .W43 2004eb 
072 7 |a ZA  |2 lcco 
072 7 |a TK  |2 lcco 
084 |a 54.84  |2 bcl 
084 |a TP18-532  |2 clc 
049 |a MAIN 
111 2 |a WebKDD 2004  |d (2004 :  |c Seattle, Wash.)  |0 http://id.loc.gov/authorities/names/nb2006024784  |1 http://viaf.org/viaf/126925009 
245 1 0 |a Advances in web mining and web usage analysis :  |b 6th International Workshop on Knowledge Discovery on the Web, WebKDD 2004, Seattle, WA, USA, August 22-25, 2004 : revised selected papers /  |c Bamshad Mobasher [and others]. 
246 3 0 |a WebKDD 2004 
246 3 0 |a 6th International Workshop on Knowledge Discovery on the Web 
246 3 |a Sixth International Workshop on Knowledge Discovery on the Web 
246 3 0 |a International Workshop on Knowledge Discovery on the Web 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2006. 
300 |a 1 online resource (x, 187 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a LNCS sublibrary. SL 7, Artificial intelligence 
490 1 |a Hot topics 
490 1 |a Lecture notes in computer science ;  |v 3932.  |a Lecture notes in artificial intelligence 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Web Usage Analysis and User Modeling -- Mining Temporally Changing Web Usage Graphs -- Improving the Web Usage Analysis Process: A UML Model of the ETL Process -- Web Personalization and Recommender Systems -- Mission-Based Navigational Behaviour Modeling for Web Recommender Systems -- Complete This Puzzle: A Connectionist Approach to Accurate Web Recommendations Based on a Committee of Predictors -- Collaborative Quality Filtering: Establishing Consensus or Recovering Ground Truth? -- Search Personalization -- Spying Out Accurate User Preferences for Search Engine Adaptation -- Using Hyperlink Features to Personalize Web Search -- Semantic Web Mining -- Discovering Links Between Lexical and Surface Features in Questions and Answers -- Integrating Web Conceptual Modeling and Web Usage Mining -- Boosting for Text Classification with Semantic Features -- Markov Blankets and Meta-heuristics Search: Sentiment Extraction from Unstructured Texts. 
520 |a TheWebisaliveenvironmentthatmanagesanddrivesawidespectrumofapp- cations in which a user may interact with a company, a governmental authority, a non-governmental organization or other non-pro?t institution or other users. User preferences and expectations, together with usage patterns, form the basis for personalized, user-friendly and business-optimal services. Key Web business metrics enabled by proper data capture and processing are essential to run an e?ective business or service. Enabling technologies include data mining, sc- able warehousing and preprocessing, sequence discovery, real time processing, document classi?cation, user modeling and quality evaluation models for them. Recipient technologies required for user pro?ling and usage patterns include recommendation systems, Web analytics applications, and application servers, coupled with content management systems and fraud detectors. Furthermore, the inherent and increasing heterogeneity of the Web has - quired Web-based applications to more e?ectively integrate a variety of types of data across multiple channels and from di?erent sources. The development and application of Web mining techniques in the context of Web content, Web usage, and Web structure data has already resulted in dramatic improvements in a variety of Web applications, from search engines, Web agents, and content management systems, to Web analytics and personalization services. A focus on techniques and architectures for more e?ective integration and mining of c- tent, usage, and structure data from di?erent sourcesis likely to leadto the next generation of more useful and more intelligent applications. 
650 0 |a Web usage mining  |v Congresses. 
650 0 |a Internet users  |v Congresses. 
650 0 7 |a Internet users.  |2 cct 
650 0 7 |a Web usage mining.  |2 cct 
650 7 |a Informatique.  |2 eclas 
650 7 |a Internet users.  |2 fast  |0 (OCoLC)fst00977300 
650 7 |a Web usage mining.  |2 fast  |0 (OCoLC)fst01173271 
650 1 7 |a World wide web.  |2 gtt 
650 1 7 |a Datamining.  |2 gtt 
650 1 7 |a Kunstmatige intelligentie.  |2 gtt 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Mobasher, Bamshad.  |0 http://id.loc.gov/authorities/names/nb2005018936  |1 http://viaf.org/viaf/35565214 
776 0 8 |i Print version:  |a WebKDD 2004 (2004 : Seattle, Wash.).  |t Advances in web mining and web usage analysis.  |d Berlin ; New York : Springer, ©2006  |z 3540471278  |z 9783540471271  |w (DLC) 2006934110  |w (OCoLC)74650739 
830 0 |a LNCS sublibrary.  |n SL 7,  |p Artificial intelligence. 
830 0 |a Lecture notes in computer science ;  |v 3932. 
830 0 |a Lecture notes in computer science.  |p Lecture notes in artificial intelligence. 
830 0 |a Hot topics (Berlin, Germany)  |0 http://id.loc.gov/authorities/names/no2002056944 
856 4 0 |u http://link.springer.com/10.1007/11899402  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 8c7d2bc9-5cf5-54d8-b724-47f4fb3751b9  |s b375ea46-5105-5bc7-90ae-213cee941689 
928 |t Library of Congress classification  |a ZA4235 .W43 2004eb  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/11899402  |z SpringerLink  |g ebooks  |i 9877147