Artificial neural networks for the modelling and fault diagnosis of technical processes /

Saved in:
Bibliographic Details
Author / Creator:Patan, Krzysztof.
Imprint:Berlin : Springer, 2008.
Description:1 online resource (xxii, 206 pages) : illustrations.
Language:English
Series:Lecture notes in control and information sciences ; 377
Lecture notes in control and information sciences ; 377.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11069457
Hidden Bibliographic Details
ISBN:9783540798729
3540798722
9783540798712
3540798714
Notes:Includes bibliographical references and index.
Print version record.
Summary:An unappealing characteristic of all real-world systems is the fact that they are vulnerable to faults, malfunctions and, more generally, unexpected modes of - haviour. This explains why there is a continuous need for reliable and universal monitoring systems based on suitable and e?ective fault diagnosis strategies. This is especially true for engineering systems, whose complexity is permanently growing due to the inevitable development of modern industry as well as the information and communication technology revolution. Indeed, the design and operation of engineering systems require an increased attention with respect to availability, reliability, safety and fault tolerance. Thus, it is natural that fault diagnosis plays a fundamental role in modern control theory and practice. This is re?ected in plenty of papers on fault diagnosis in many control-oriented c- ferencesand journals. Indeed, a largeamount of knowledgeon model basedfault diagnosis has been accumulated through scienti?c literature since the beginning of the 1970s. As a result, a wide spectrum of fault diagnosis techniques have been developed. A major category of fault diagnosis techniques is the model based one, where an analytical model of the plant to be monitored is assumed to be available.
Other form:Patan, Krzysztof. Artificial neural networks for the modelling and fault diagnosis of technical processes. Berlin : Springer, 2008 9783540798712

MARC

LEADER 00000cam a2200000Ia 4500
001 11069457
005 20170630045456.1
006 m o d
007 cr cn|||||||||
008 081117s2008 gw a ob 001 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OH1  |d OCLCQ  |d CEF  |d OCLCQ  |d OCLCO  |d ITD  |d A7U  |d OCLCQ  |d OCLCF  |d BEDGE  |d DKDLA  |d OCLCQ  |d YDXCP  |d IDEBK  |d NUI  |d SLY  |d OCLCQ  |d Z5A 
019 |a 243863979  |a 271819694  |a 488913108  |a 880320531 
020 |a 9783540798729 
020 |a 3540798722 
020 |a 9783540798712  |q (pbk.) 
020 |a 3540798714  |q (pbk.) 
035 |a (OCoLC)272298826  |z (OCoLC)243863979  |z (OCoLC)271819694  |z (OCoLC)488913108  |z (OCoLC)880320531 
037 |a 978-3-540-79871-2  |b Springer  |n http://www.springerlink.com 
050 4 |a QA169.6  |b .P38 2008eb 
084 |a TB4-05  |2 clc 
084 |a TP18  |2 clc 
049 |a MAIN 
100 1 |a Patan, Krzysztof.  |0 http://id.loc.gov/authorities/names/nb2008014889  |1 http://viaf.org/viaf/161923439 
245 1 0 |a Artificial neural networks for the modelling and fault diagnosis of technical processes /  |c Krzysztof Patan. 
260 |a Berlin :  |b Springer,  |c 2008. 
300 |a 1 online resource (xxii, 206 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in control and information sciences ;  |v 377 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Modelling Issue in Fault Diagnosis -- Locally Recurrent Neural Networks -- Approximation Abilities of Locally Recurrent Networks -- Stability and Stabilization of Locally Recurrent Networks -- Optimum Experimental Design for Locally Recurrent Networks -- Decision Making in Fault Detection -- Industrial Applications -- Concluding Remarks and Further Research Directions. 
520 |a An unappealing characteristic of all real-world systems is the fact that they are vulnerable to faults, malfunctions and, more generally, unexpected modes of - haviour. This explains why there is a continuous need for reliable and universal monitoring systems based on suitable and e?ective fault diagnosis strategies. This is especially true for engineering systems, whose complexity is permanently growing due to the inevitable development of modern industry as well as the information and communication technology revolution. Indeed, the design and operation of engineering systems require an increased attention with respect to availability, reliability, safety and fault tolerance. Thus, it is natural that fault diagnosis plays a fundamental role in modern control theory and practice. This is re?ected in plenty of papers on fault diagnosis in many control-oriented c- ferencesand journals. Indeed, a largeamount of knowledgeon model basedfault diagnosis has been accumulated through scienti?c literature since the beginning of the 1970s. As a result, a wide spectrum of fault diagnosis techniques have been developed. A major category of fault diagnosis techniques is the model based one, where an analytical model of the plant to be monitored is assumed to be available. 
650 0 |a Fault location (Engineering)  |0 http://id.loc.gov/authorities/subjects/sh85047487 
650 0 |a Neural networks (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh90001937 
650 0 7 |a Fault location (Engineering)  |2 cct 
650 0 7 |a Neural networks (Computer science)  |2 cct 
650 7 |a Ingénierie.  |2 eclas 
650 7 |a Fault location (Engineering)  |2 fast  |0 (OCoLC)fst00921982 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Fehlererkennung.  |2 swd 
650 7 |a Rekursives neuronales Netz.  |2 swd 
650 7 |a Technisches System.  |2 swd 
655 4 |a Electronic books. 
776 1 |a Patan, Krzysztof.  |t Artificial neural networks for the modelling and fault diagnosis of technical processes.  |d Berlin : Springer, 2008  |z 9783540798712  |w (OCoLC)227279537 
830 0 |a Lecture notes in control and information sciences ;  |v 377. 
856 4 0 |u http://link.springer.com/10.1007/978-3-540-79872-9  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 760a972b-1912-5831-b7d4-df4fe5dfe8ca  |s 0c646891-9c47-5ecc-ac8b-a318ad35f847 
928 |t Library of Congress classification  |a QA169.6 .P38 2008eb  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-540-79872-9  |z SpringerLink  |g ebooks  |i 9877501