Boundedly controlled topology : foundations of algebraic topology and simple homotopy theory /

Saved in:
Bibliographic Details
Author / Creator:Anderson, Douglas R. (Douglas Ross), 1940-
Imprint:Berlin ; New York : Springer-Verlag, ©1988.
Description:1 online resource (xii, 309 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1323
Lecture notes in mathematics (Springer-Verlag) ; 1323.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11069777
Hidden Bibliographic Details
Other authors / contributors:Munkholm, Hans J. (Hans Jørgen), 1940-
ISBN:9783540392491
3540392491
0387193979
9780387193977
Notes:Includes bibliographical references (pages 301-304) and index.
Restrictions unspecified
Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2011.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2011 HathiTrust Digital Library committed to preserve
Print version record.
Summary:Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Siebenmann's proper simple homotopy theory when Z = IR or IR2.
Other form:Print version: Anderson, Douglas R. (Douglas Ross), 1940- Boundedly controlled topology. Berlin ; New York : Springer-Verlag, ©1988 0387193979

MARC

LEADER 00000cam a2200000Ia 4500
001 11069777
005 20170630044637.1
006 m o d
007 cr unu||||||||
008 081209s1988 gw ob 001 0 eng d
003 ICU
040 |a SPLNM  |b eng  |e pn  |c SPLNM  |d GW5XE  |d OCLCQ  |d OCLCE  |d GW5XE  |d OCLCO  |d OCLCF  |d OCLCQ 
019 |a 652290519  |a 700637440  |a 760199582 
020 |a 9783540392491  |q (electronic bk.) 
020 |a 3540392491  |q (electronic bk.) 
020 |z 0387193979 
020 |z 9780387193977 
035 |a (OCoLC)277187029  |z (OCoLC)652290519  |z (OCoLC)700637440  |z (OCoLC)760199582 
042 |a dlr 
050 4 |a QA3  |b .L28 no. 1323  |a QA613.4 
084 |a 31.65  |2 bcl 
049 |a MAIN 
100 1 |a Anderson, Douglas R.  |q (Douglas Ross),  |d 1940-  |0 http://id.loc.gov/authorities/names/n87906667  |1 http://viaf.org/viaf/47396827 
245 1 0 |a Boundedly controlled topology :  |b foundations of algebraic topology and simple homotopy theory /  |c Douglas R. Anderson, Hans J. Munkholm. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©1988. 
300 |a 1 online resource (xii, 309 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1323 
504 |a Includes bibliographical references (pages 301-304) and index. 
505 0 |a Category Theoretic Foundations -- The Algebraic Topology of Boundedly Controlled Spaces -- The Geometric Boundedly Controlled Whitehead Group -- Free and Projective RPG Modules. The Algebraic Whitehead Groups of RPG -- The Isomorphism between the Geometric and Algebraic Whitehead Groups -- Boundedly Controlled Manifolds and the s-Cobordism Theorem -- Toward Computations -- Bibliography -- Index. 
520 |a Several recent investigations have focused attention on spaces and manifolds which are non-compact but where the problems studied have some kind of "control near infinity". This monograph introduces the category of spaces that are "boundedly controlled" over the (usually non-compact) metric space Z. It sets out to develop the algebraic and geometric tools needed to formulate and to prove boundedly controlled analogues of many of the standard results of algebraic topology and simple homotopy theory. One of the themes of the book is to show that in many cases the proof of a standard result can be easily adapted to prove the boundedly controlled analogue and to provide the details, often omitted in other treatments, of this adaptation. For this reason, the book does not require of the reader an extensive background. In the last chapter it is shown that special cases of the boundedly controlled Whitehead group are strongly related to lower K-theoretic groups, and the boundedly controlled theory is compared to Siebenmann's proper simple homotopy theory when Z = IR or IR2. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [S.l.] :  |c HathiTrust Digital Library,  |d 2011.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2011  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
650 0 |a Piecewise linear topology.  |0 http://id.loc.gov/authorities/subjects/sh85102031 
650 0 |a Homotopy theory.  |0 http://id.loc.gov/authorities/subjects/sh85061803 
650 0 |a Complexes.  |0 http://id.loc.gov/authorities/subjects/sh85029372 
650 0 |a Categories (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85020992 
650 6 |a Complexes (Mathématiques) 
650 6 |a Catégories (Mathématiques) 
650 7 |a Categories (Mathematics)  |2 fast  |0 (OCoLC)fst00849000 
650 7 |a Complexes.  |2 fast  |0 (OCoLC)fst00871597 
650 7 |a Homotopy theory.  |2 fast  |0 (OCoLC)fst00959852 
650 7 |a Piecewise linear topology.  |2 fast  |0 (OCoLC)fst01063865 
650 0 7 |a Algebraische Topologie.  |2 swd 
650 0 7 |a Einfache Homotopietheorie.  |2 swd 
650 0 7 |a Kategorientheorie.  |2 swd 
655 4 |a Electronic books. 
700 1 |a Munkholm, Hans J.  |q (Hans Jørgen),  |d 1940-  |0 http://id.loc.gov/authorities/names/n87906665  |1 http://viaf.org/viaf/62184484 
776 0 8 |i Print version:  |a Anderson, Douglas R. (Douglas Ross), 1940-  |t Boundedly controlled topology.  |d Berlin ; New York : Springer-Verlag, ©1988  |z 0387193979  |w (DLC) 88016054  |w (OCoLC)18052132 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1323. 
856 4 0 |u http://link.springer.com/10.1007/BFb0079806  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 78a26945-21c4-5b7f-a259-a67e24c86ad6  |s b1bf7431-0350-5850-b558-e2558e8229d4 
928 |t Library of Congress classification  |a QA3 .L28 no. 1323  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0079806  |z SpringerLink  |g ebooks  |i 9877823