Computational intelligence for remote sensing /
Saved in:
Imprint: | Berlin : Springer, ©2008. |
---|---|
Description: | 1 online resource (x, 391 pages) : illustrations. |
Language: | English |
Series: | Studies in computational intelligence ; v. 133 Studies in computational intelligence ; v. 133. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11070070 |
Table of Contents:
- Optical configurations for imaging spectrometers / X. Prieto-Blanco [and others]
- Remote sensing data compression / Joan Serra-Sagristà, Francesc Aulí-Llinàs
- A multiobjective evolutionary algorithm for hyperspectral image watermarking / D. Sal, M. Graña
- Architecture and services for computational intelligence in remote sensing / Sergio D'Elia [and others]
- On content-based image retrieval systems for hyperspectral remote sensing images / Miguel A. Veganzones, José Orlando Maldenado, Manuel Graña
- An analytical approach to the optimal deployment of wireless sensor networks / J. Vales-Alonso [and others]
- Parallel spatial-spectral processing of hyperspectral images / Antonio J. Plaza
- Parallel classification of hyperspectral images using neural networks / Javier Plaza [and others]
- Positioning weather systems from remote sensing data using genetic algorithms / Wong Ka Yan, Yip Chi Lap
- A computation reduced technique to primitive feature extraction for image information mining via the use of wavelets / Vijay P. Shah [and others]
- Neural networks for land cover applications / Fabio Pacifici [and others]
- Information extraction for forest fire management / Andrea Pelizzari Ricardo Armas Goncalves, Mario Caetano
- Automatic preporocessing and classification system for high resolution ultra and hyperspectral images / Abraham Prieto [and others]
- Using Gaussian synapse ANNs for hyperspectral image segmentation and endmember extraction / R.J. Duro, F. Lopez-Pena, J.L. Crespo
- Unsupervised change detection from multichannel SAR data by Markov random fields / Sebastiano B. Serpico, Gabriele Moser.