Cyclic Galois extensions of commutative rings /

Saved in:
Bibliographic Details
Author / Creator:Greither, Cornelius.
Imprint:Berlin ; New York : Springer-Verlag, ©1992.
Description:1 online resource (x, 145 pages) : illustrations.
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1534
Lecture notes in mathematics (Springer-Verlag) ; 1534.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11070193
Hidden Bibliographic Details
ISBN:9783540475392
3540475397
3540563504
9783540563501
0387563504
9780387563503
Notes:Includes bibliographical references (pages 140-143) and index.
Print version record.
Summary:The structure theory of abelian extensions of commutative rings is a subjectwhere commutative algebra and algebraic number theory overlap. This exposition is aimed at readers with some background in either of these two fields. Emphasis is given to the notion of a normal basis, which allows one to view in a well-known conjecture in number theory (Leopoldt's conjecture) from a new angle. Methods to construct certain extensions quite explicitly are also described at length.
Other form:Print version: Greither, Cornelius. Cyclic Galois extensions of commutative rings. Berlin ; New York : Springer-Verlag, ©1992 3540563504

MARC

LEADER 00000cam a2200000Ia 4500
001 11070193
005 20170630045535.5
006 m o d
007 cr unu||||||||
008 081218s1992 gw a ob 001 0 eng d
003 ICU
040 |a SPLNM  |b eng  |e pn  |c SPLNM  |d GW5XE  |d OCLCQ  |d OL$  |d OCLCO  |d GW5XE  |d OCLCF  |d OCLCQ 
020 |a 9783540475392  |q (electronic bk.) 
020 |a 3540475397  |q (electronic bk.) 
020 |z 3540563504 
020 |z 9783540563501 
020 |z 0387563504 
020 |z 9780387563503 
035 |a (OCoLC)288956863 
050 4 |a QA3  |b .L28 no. 1534  |a QA251.3 
049 |a MAIN 
100 1 |a Greither, Cornelius.  |0 http://id.loc.gov/authorities/names/n82161322  |1 http://viaf.org/viaf/120886557 
245 1 0 |a Cyclic Galois extensions of commutative rings /  |c Cornelius Greither. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©1992. 
300 |a 1 online resource (x, 145 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1534 
504 |a Includes bibliographical references (pages 140-143) and index. 
520 |a The structure theory of abelian extensions of commutative rings is a subjectwhere commutative algebra and algebraic number theory overlap. This exposition is aimed at readers with some background in either of these two fields. Emphasis is given to the notion of a normal basis, which allows one to view in a well-known conjecture in number theory (Leopoldt's conjecture) from a new angle. Methods to construct certain extensions quite explicitly are also described at length. 
588 0 |a Print version record. 
650 0 |a Commutative rings.  |0 http://id.loc.gov/authorities/subjects/sh85029269 
650 0 |a Galois theory.  |0 http://id.loc.gov/authorities/subjects/sh85052872 
650 0 |a Ring extensions (Algebra)  |0 http://id.loc.gov/authorities/subjects/sh85114119 
650 7 |a Commutative rings.  |2 fast  |0 (OCoLC)fst00871205 
650 7 |a Galois theory.  |2 fast  |0 (OCoLC)fst00937326 
650 7 |a Ring extensions (Algebra)  |2 fast  |0 (OCoLC)fst01097986 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Greither, Cornelius.  |t Cyclic Galois extensions of commutative rings.  |d Berlin ; New York : Springer-Verlag, ©1992  |z 3540563504  |w (DLC) 92041118  |w (OCoLC)27069324 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1534. 
856 4 0 |u http://link.springer.com/10.1007/BFb0089165  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 1af8801b-4cfc-57ad-b615-0c9e5ba02616  |s 371381c4-1168-5fc1-bc6f-9d3db376bd72 
928 |t Library of Congress classification  |a QA3 .L28 no. 1534  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0089165  |z SpringerLink  |g ebooks  |i 9878243