Finite presentability of S-arithmetic groups : compact presentability of solvable groups /

Saved in:
Bibliographic Details
Author / Creator:Abels, Herbert, 1941-
Imprint:Berlin ; New York : Springer-Verlag, ©1987.
Description:1 online resource (vi, 178 pages) : illustrations.
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1261
Lecture notes in mathematics (Springer-Verlag) ; 1261.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11070280
Hidden Bibliographic Details
ISBN:9783540471981
3540471987
3540179755
9783540179757
0387179755
9780387179759
Notes:Includes bibliographical references (pages 171-174) and index.
Restrictions unspecified
Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve
Print version record.
Summary:The problem of determining which S-arithmetic groups have a finite presentation is solved for arbitrary linear algebraic groups over finite extension fields of #3. For certain solvable topological groups this problem may be reduced to an analogous problem, that of compact presentability. Most of this monograph deals with this question. The necessary background material and the general framework in which the problem arises are given partly in a detailed account, partly in survey form. In the last two chapters the application to S-arithmetic groups is given: here the reader is assumed to have some background in algebraic and arithmetic group. The book will be of interest to readers working on infinite groups, topological groups, and algebraic and arithmetic groups.
Other form:Print version: Abels, Herbert, 1941- Finite presentability of S-arithmetic groups. Berlin ; New York : Springer-Verlag, ©1987 3540179755

MARC

LEADER 00000cam a2200000Ia 4500
001 11070280
005 20170630045824.4
006 m o d
007 cr unu||||||||
008 081221s1987 gw a ob 001 0 eng d
003 ICU
040 |a SPLNM  |b eng  |e pn  |c SPLNM  |d GW5XE  |d OCLCQ  |d OL$  |d OCLCO  |d OCLCE  |d GW5XE  |d OCLCF  |d OCLCQ 
019 |a 625187784  |a 655145324  |a 682137789  |a 816981188 
020 |a 9783540471981  |q (electronic bk.) 
020 |a 3540471987  |q (electronic bk.) 
020 |z 3540179755 
020 |z 9783540179757 
020 |z 0387179755 
020 |z 9780387179759 
035 |a (OCoLC)289104803  |z (OCoLC)625187784  |z (OCoLC)655145324  |z (OCoLC)682137789  |z (OCoLC)816981188 
042 |a dlr 
050 4 |a QA3  |b .L28 no. 1261  |a QA171 
084 |a 31.21  |2 bcl 
084 |a MAT 303f  |2 stub 
084 |a SI 850  |2 rvk 
084 |a *20F05  |2 msc 
084 |a 20-02  |2 msc 
084 |a 20F16  |2 msc 
084 |a 20G25  |2 msc 
084 |a 20G30  |2 msc 
084 |a 27  |2 sdnb 
049 |a MAIN 
100 1 |a Abels, Herbert,  |d 1941-  |0 http://id.loc.gov/authorities/names/n86129971  |1 http://viaf.org/viaf/32483000 
245 1 0 |a Finite presentability of S-arithmetic groups :  |b compact presentability of solvable groups /  |c Herbert Abels. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©1987. 
300 |a 1 online resource (vi, 178 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1261 
504 |a Includes bibliographical references (pages 171-174) and index. 
505 0 |a Introduction -- Compact presentability and contracting automorphisms -- Filtrations of Lie algebras and groups -- A necessary condition for compact presentability -- Implications of the necessary condition -- The second homology -- S-arithmetic groups -- S-arithmetic solvable groups -- Appendix -- References -- List of symbols -- Index. 
520 |a The problem of determining which S-arithmetic groups have a finite presentation is solved for arbitrary linear algebraic groups over finite extension fields of #3. For certain solvable topological groups this problem may be reduced to an analogous problem, that of compact presentability. Most of this monograph deals with this question. The necessary background material and the general framework in which the problem arises are given partly in a detailed account, partly in survey form. In the last two chapters the application to S-arithmetic groups is given: here the reader is assumed to have some background in algebraic and arithmetic group. The book will be of interest to readers working on infinite groups, topological groups, and algebraic and arithmetic groups. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [S.l.] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
650 0 |a Linear algebraic groups.  |0 http://id.loc.gov/authorities/subjects/sh85077171 
650 0 |a Arithmetic groups.  |0 http://id.loc.gov/authorities/subjects/sh85007175 
650 0 |a Lie groups.  |0 http://id.loc.gov/authorities/subjects/sh85076786 
650 6 |a Groupes linéaires algébriques. 
650 6 |a Groupes arithmétiques. 
650 6 |a Lie, Groupes de. 
650 7 |a Arithmetic groups.  |2 fast  |0 (OCoLC)fst00814524 
650 7 |a Lie groups.  |2 fast  |0 (OCoLC)fst00998135 
650 7 |a Linear algebraic groups.  |2 fast  |0 (OCoLC)fst00999060 
650 0 7 |a Auflösbare Gruppe.  |0 (DE-588)4245706-3  |2 gnd 
650 0 7 |a Endliche Darstellung.  |0 (DE-588)4403934-7  |2 gnd 
650 0 7 |a Endliche Präsentation.  |0 (DE-588)4139970-5  |2 gnd 
650 0 7 |a S-arithmetische Gruppe.  |0 (DE-588)4139972-9  |2 gnd 
650 0 7 |a Endliche Präsentation.  |2 swd 
650 0 7 |a S-arithmetische Gruppe.  |2 swd 
653 0 |a Arithmetic groups 
653 0 |a Lie groups 
653 0 |a Linear algebraic groups 
655 4 |a Kompakte Präsentation. 
655 4 |a Electronic books. 
655 7 |a Kompakte Präsentation.  |2 swd 
776 0 8 |i Print version:  |a Abels, Herbert, 1941-  |t Finite presentability of S-arithmetic groups.  |d Berlin ; New York : Springer-Verlag, ©1987  |z 3540179755  |w (DLC) 87016399  |w (OCoLC)16080922 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1261. 
856 4 0 |u http://link.springer.com/10.1007/BFb0079708  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i a13848b8-5537-50a9-b22f-bf2e1ea6c541  |s 5296ba33-b7e1-5f32-8f28-81ac2a9db4c9 
928 |t Library of Congress classification  |a QA3 .L28 no. 1261  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0079708  |z SpringerLink  |g ebooks  |i 9878330