Grassmannians and Gauss maps in piecewise-linear and piecewise-differentiable topology /

Saved in:
Bibliographic Details
Author / Creator:Levitt, N. (Norman), 1943-
Imprint:Berlin ; New York : Springer-Verlag, ©1989.
Description:1 online resource (v, 203 pages) : illustrations.
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1366
Lecture notes in mathematics (Springer-Verlag) ; 1366.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11070429
Hidden Bibliographic Details
ISBN:9783540460787
3540460780
9783540507567
3540507566
9780387507569
0387507566
Notes:Includes bibliographical references (pages 202-203).
Restrictions unspecified
Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve
Print version record.
Summary:The book explores the possibility of extending the notions of "Grassmannian" and "Gauss map" to the PL category. They are distinguished from "classifying space" and "classifying map" which are essentially homotopy-theoretic notions. The analogs of Grassmannian and Gauss map defined incorporate geometric and combinatorial information. Principal applications involve characteristic class theory, smoothing theory, and the existence of immersion satifying certain geometric criteria, e.g. curvature conditions. The book assumes knowledge of basic differential topology and bundle theory, including Hirsch-Gromov-Phillips theory, as well as the analogous theories for the PL category. The work should be of interest to mathematicians concerned with geometric topology, PL and PD aspects of differential geometry and the geometry of polyhedra.
Other form:Print version: Levitt, N. (Norman), 1943- Grassmannians and Gauss maps in piecewise-linear and piecewise-differentiable topology. Berlin ; New York : Springer-Verlag, ©1989 0387507566

MARC

LEADER 00000cam a2200000Ia 4500
001 11070429
005 20170630044847.0
006 m o d
007 cr unu||||||||
008 081228s1989 gw a ob 001 0 eng d
003 ICU
040 |a SPLNM  |b eng  |e pn  |c SPLNM  |d GW5XE  |d OCLCQ  |d OL$  |d OCLCO  |d OCLCQ  |d GW5XE  |d OCLCE  |d OCLCF  |d OCLCQ 
019 |a 625046013  |a 652381427  |a 679997552 
020 |a 9783540460787  |q (electronic bk.) 
020 |a 3540460780  |q (electronic bk.) 
020 |z 9783540507567 
020 |z 3540507566 
020 |z 9780387507569 
020 |z 0387507566 
035 |a (OCoLC)294834077  |z (OCoLC)625046013  |z (OCoLC)652381427  |z (OCoLC)679997552 
042 |a dlr 
050 4 |a QA3  |b .L28 no. 1366  |a QA613.4 
049 |a MAIN 
100 1 |a Levitt, N.  |q (Norman),  |d 1943-  |0 http://id.loc.gov/authorities/names/n85104531  |1 http://viaf.org/viaf/108799027 
245 1 0 |a Grassmannians and Gauss maps in piecewise-linear and piecewise-differentiable topology /  |c Norman Levitt. 
260 |a Berlin ;  |a New York :  |b Springer-Verlag,  |c ©1989. 
300 |a 1 online resource (v, 203 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1366 
504 |a Includes bibliographical references (pages 202-203). 
505 0 |a Introduction -- Local Formulae for Characteristic classes -- Formal Links and the PL Grassmannian n, k. -- Some Variations of the n, k -- The Immersion Theorem for Subcomplexes of n, k -- Immersions Equivariant with Respect to Orthogonal Actions on Rn+k -- Immersions into Triangulated Manifolds -- The Grassmannian for Piecewise Smooth Immersions -- Some Applications to Smoothing Theory -- Equivariant Piecewise Differentiable Immersions -- Piecewise Differentiable Immersions into Riemannian Manifolds -- Appendix: Glossary of Important Definitions and Constructions -- References. 
520 |a The book explores the possibility of extending the notions of "Grassmannian" and "Gauss map" to the PL category. They are distinguished from "classifying space" and "classifying map" which are essentially homotopy-theoretic notions. The analogs of Grassmannian and Gauss map defined incorporate geometric and combinatorial information. Principal applications involve characteristic class theory, smoothing theory, and the existence of immersion satifying certain geometric criteria, e.g. curvature conditions. The book assumes knowledge of basic differential topology and bundle theory, including Hirsch-Gromov-Phillips theory, as well as the analogous theories for the PL category. The work should be of interest to mathematicians concerned with geometric topology, PL and PD aspects of differential geometry and the geometry of polyhedra. 
506 |3 Use copy  |f Restrictions unspecified  |2 star  |5 MiAaHDL 
533 |a Electronic reproduction.  |b [S.l.] :  |c HathiTrust Digital Library,  |d 2010.  |5 MiAaHDL 
538 |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.  |u http://purl.oclc.org/DLF/benchrepro0212  |5 MiAaHDL 
583 1 |a digitized  |c 2010  |h HathiTrust Digital Library  |l committed to preserve  |2 pda  |5 MiAaHDL 
588 0 |a Print version record. 
650 0 |a Grassmann manifolds.  |0 http://id.loc.gov/authorities/subjects/sh85056534 
650 0 |a Gauss maps.  |0 http://id.loc.gov/authorities/subjects/sh85053553 
650 0 |a Piecewise linear topology.  |0 http://id.loc.gov/authorities/subjects/sh85102031 
650 0 |a Differential topology.  |0 http://id.loc.gov/authorities/subjects/sh85037923 
650 6 |a Grassmann, Variétés de. 
650 6 |a Topologie différentielle. 
650 6 |a Topologie linéaire par morceaux. 
650 6 |a Fonctions gaussiennes. 
650 7 |a Differential topology.  |2 fast  |0 (OCoLC)fst00893498 
650 7 |a Gauss maps.  |2 fast  |0 (OCoLC)fst00939013 
650 7 |a Grassmann manifolds.  |2 fast  |0 (OCoLC)fst00946825 
650 7 |a Piecewise linear topology.  |2 fast  |0 (OCoLC)fst01063865 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Levitt, N. (Norman), 1943-  |t Grassmannians and Gauss maps in piecewise-linear and piecewise-differentiable topology.  |d Berlin ; New York : Springer-Verlag, ©1989  |z 0387507566  |w (DLC) 89006172  |w (OCoLC)19515227 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1366. 
856 4 0 |u http://link.springer.com/10.1007/BFb0084994  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 0df78b98-f98d-5c36-af72-ef42005d195c  |s 7b8262bc-873a-5aa8-9c17-160c097c9b5a 
928 |t Library of Congress classification  |a QA3 .L28 no. 1366  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0084994  |z SpringerLink  |g ebooks  |i 9878479