Geometric methods in degree theory for equivariant maps /

Saved in:
Bibliographic Details
Author / Creator:Kushkuley, Alexander, 1953-
Imprint:Berlin ; New York : Springer, ©1996.
Description:1 online resource (136 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 1632
Lecture notes in mathematics (Springer-Verlag) ; 1632.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11070482
Hidden Bibliographic Details
Other authors / contributors:Balanov, Zalman, 1959-
ISBN:9783540687269
3540687262
9783540615293
3540615296
Notes:Includes bibliographical references (pages 136-134) and index.
Print version record.
Summary:The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations. The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory.
Other form:Print version: Kushkuley, Alexander, 1953- Geometric methods in degree theory for equivariant maps. Berlin ; New York : Springer, ©1996 3540615296

MARC

LEADER 00000cam a2200000Ia 4500
001 11070482
005 20170630044845.8
006 m o d
007 cr unu||||||||
008 081227s1996 gw ob 001 0 eng d
003 ICU
040 |a SPLNM  |b eng  |e pn  |c SPLNM  |d COO  |d GW5XE  |d OCLCQ  |d GW5XE  |d OCLCE  |d OCLCF  |d OCLCQ  |d NUI  |d OCLCQ 
019 |a 654380865  |a 912384238 
020 |a 9783540687269  |q (electronic bk.) 
020 |a 3540687262  |q (electronic bk.) 
020 |z 9783540615293 
020 |z 3540615296 
035 |a (OCoLC)294787037  |z (OCoLC)654380865  |z (OCoLC)912384238 
050 4 |a QA3  |b .L28 no. 1632  |a QA612.7 
084 |a 31.61  |2 bcl 
049 |a MAIN 
100 1 |a Kushkuley, Alexander,  |d 1953-  |0 http://id.loc.gov/authorities/names/n96068445  |1 http://viaf.org/viaf/115092424 
245 1 0 |a Geometric methods in degree theory for equivariant maps /  |c Alexander Kushkuley, Zalman Balanov. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©1996. 
300 |a 1 online resource (136 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1632 
504 |a Includes bibliographical references (pages 136-134) and index. 
520 |a The book introduces conceptually simple geometric ideas based on the existence of fundamental domains for metric G- spaces. A list of the problems discussed includes Borsuk-Ulam type theorems for degrees of equivariant maps in finite and infinite dimensional cases, extensions of equivariant maps and equivariant homotopy classification, genus and G-category, elliptic boundary value problem, equivalence of p-group representations. The new results and geometric clarification of several known theorems presented here will make it interesting and useful for specialists in equivariant topology and its applications to non-linear analysis and representation theory. 
505 0 |a Ch. 1. Fundamental domains and extension of equivariant maps -- Ch. 2. Degree theory for equivariant maps of finite-dimensional manifolds: topological actions -- Ch. 3. Degree theory for equivariant maps of finite-dimensional manifolds: smooth actions -- Ch. 4. A winding number of equivariant vector fields in infinite dimensional Banach spaces -- Ch. 5. Some applications. 
588 0 |a Print version record. 
650 0 |a Topological degree.  |0 http://id.loc.gov/authorities/subjects/sh85036478 
650 0 |a Mappings (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85080857 
650 0 |a Homotopy theory.  |0 http://id.loc.gov/authorities/subjects/sh85061803 
650 6 |a Degré topologique. 
650 6 |a Applications (Mathématiques) 
650 6 |a Homotopie. 
650 7 |a Homotopy theory.  |2 fast  |0 (OCoLC)fst00959852 
650 7 |a Mappings (Mathematics)  |2 fast  |0 (OCoLC)fst01008724 
650 7 |a Topological degree.  |2 fast  |0 (OCoLC)fst01152679 
650 1 7 |a Homotopie.  |2 gtt 
650 7 |a Homotopia.  |2 larpcal 
655 4 |a Electronic books. 
700 1 |a Balanov, Zalman,  |d 1959-  |0 http://id.loc.gov/authorities/names/n96068446  |1 http://viaf.org/viaf/40085165 
776 0 8 |i Print version:  |a Kushkuley, Alexander, 1953-  |t Geometric methods in degree theory for equivariant maps.  |d Berlin ; New York : Springer, ©1996  |z 3540615296  |w (DLC) 96032851  |w (OCoLC)35103562 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1632. 
856 4 0 |u http://link.springer.com/10.1007/BFb0092822  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 14dd446a-a82c-55f2-a363-6bdbeb2a1ef8  |s e729aa76-d15b-5220-baaf-90a26d58b12b 
928 |t Library of Congress classification  |a QA3 .L28 no. 1632  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/BFb0092822  |z SpringerLink  |g ebooks  |i 9878536