Infinite dimensional Lie transformations groups /

Saved in:
Bibliographic Details
Author / Creator:Ōmori, Hideki, 1938-
Imprint:Berlin ; New York : Springer-Verlag, 1974.
Description:1 online resource (x, 149 pages).
Language:English
Series:Lecture notes in mathematics, 0075-8434 ; 427
Lecture notes in mathematics (Springer-Verlag) ; 427.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11070577
Hidden Bibliographic Details
ISBN:9783540372950
3540372954
9783540070139
3540070133
9780387070131
0387070133
Notes:Includes bibliographical references (pages 147-149) and index.
Restrictions unspecified
Electronic reproduction. [S.l.] : HathiTrust Digital Library, 2010.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2010 HathiTrust Digital Library committed to preserve
Print version record.
Other form:Print version: Omori, Hideki, 1938- Infinite dimensional Lie transformations groups. Berlin ; New York : Springer-Verlag, 1974 0387070133
Table of Contents:
  • General theory of strong ILB-Lie groups and subgroups
  • Groups of diffeomorphisms
  • Basic theorems I
  • Vector bundle over strong ILB-Lie groups
  • Review of the smooth extension theorem and a remark on elliptic operators
  • Basic theorems II (Frobenius theorem)
  • Frobenius theorem on strong ILB-Lie groups
  • Miscellaneous examples
  • Primitive transformation groups
  • Lie algebras of vector fields
  • Linear groups and groups of diffeomorphisms.