Recursive nonlinear estimation : a geometric approach /
Saved in:
Author / Creator: | Kulhavý, Rudolf, 1957- |
---|---|
Imprint: | Berlin ; New York : Springer, ©1996. |
Description: | 1 online resource (xvi, 224 pages) : illustrations. |
Language: | English |
Series: | Lecture notes in control and information sciences ; 216 Lecture notes in control and information sciences ; 216. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11073820 |
MARC
LEADER | 00000cam a2200000Ka 4500 | ||
---|---|---|---|
001 | 11073820 | ||
005 | 20170630050220.1 | ||
006 | m o d | ||
007 | cr bn||||||abp | ||
007 | cr bn||||||ada | ||
008 | 100407s1996 gw a ob 001 0 eng d | ||
003 | ICU | ||
040 | |a OCLCE |b eng |e pn |c OCLCE |d OCLCQ |d OCLCO |d OCLCQ |d CUSER |d GW5XE |d OCLCQ |d OCLCF |d GW5XE |d OCLCQ | ||
019 | |a 321345761 |a 649391912 | ||
020 | |a 9783540409472 |q (electronic bk.) | ||
020 | |a 3540409475 |q (electronic bk.) | ||
020 | |z 3540760636 |q (Berlin ; |q pbk. ; |q alk. paper) | ||
020 | |z 9783540760634 |q (Berlin ; |q pbk. ; |q alk. paper) | ||
035 | |a (OCoLC)604760169 |z (OCoLC)321345761 |z (OCoLC)649391912 | ||
042 | |a dlr | ||
050 | 4 | |a QA276.8 |b .K845 1996 | |
084 | |a 31.73 |2 bcl | ||
084 | |a SI 845 |2 rvk | ||
084 | |a SK 840 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Kulhavý, Rudolf, |d 1957- |0 http://id.loc.gov/authorities/names/n96044650 |1 http://viaf.org/viaf/84623614 | |
245 | 1 | 0 | |a Recursive nonlinear estimation : |b a geometric approach / |c Rudolf Kulhavý. |
260 | |a Berlin ; |a New York : |b Springer, |c ©1996. | ||
300 | |a 1 online resource (xvi, 224 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent |0 http://id.loc.gov/vocabulary/contentTypes/txt | ||
337 | |a computer |b c |2 rdamedia |0 http://id.loc.gov/vocabulary/mediaTypes/c | ||
338 | |a online resource |b cr |2 rdacarrier |0 http://id.loc.gov/vocabulary/carriers/cr | ||
490 | 1 | |a Lecture notes in control and information sciences ; |v 216 | |
504 | |a Includes bibliographical references (pages 213-222) and index. | ||
505 | 0 | |a 1. Inference Under Constraints -- 2. From Matching Data to Matching Probabilities -- 3. Optimal Estimation with Compressed Data -- 4. Approximate Estimation with Compressed Data -- 5. Numerical Implementation -- 6. Concluding Remarks -- A. Selected Topics from Probability Theory -- B. Selected Topics from Convex Optimization. | |
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [S.l.] : |c HathiTrust Digital Library, |d 2010. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2010 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
520 | |a In a close analogy to matching data in Euclidean space, this monograph views parameter estimation as matching of the empirical distribution of data with a model-based distribution. Using an appealing Pythagorean-like geometry of the empirical and model distributions, the book brings a new solution to the problem of recursive estimation of non-Gaussian and nonlinear models which can be regarded as a specific approximation of Bayesian estimation. The cases of independent observations and controlled dynamic systems are considered in parallel; the former case giving initial insight into the latter case which is of primary interest to the control community. A number of examples illustrate the key concepts and tools used. This unique monograph follows some previous results on the Pythagorean theory of estimation in the literature (e.g., Chentsov, Csiszar and Amari) but extends the results to the case of controlled dynamic systems. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Parameter estimation. |0 http://id.loc.gov/authorities/subjects/sh85097853 | |
650 | 0 | |a System identification. |0 http://id.loc.gov/authorities/subjects/sh85131740 | |
650 | 0 | |a Bayesian statistical decision theory. |0 http://id.loc.gov/authorities/subjects/sh85012506 | |
650 | 4 | |a estimation paramètre. | |
650 | 4 | |a théorie estimation. | |
650 | 4 | |a ESTIMATION OPTIMALE. | |
650 | 7 | |a Bayesian statistical decision theory. |2 fast |0 (OCoLC)fst00829019 | |
650 | 7 | |a Parameter estimation. |2 fast |0 (OCoLC)fst01052990 | |
650 | 7 | |a System identification. |2 fast |0 (OCoLC)fst01141418 | |
650 | 1 | 7 | |a Schattingstheorie. |2 gtt |
650 | 7 | |a Estimation de paramètres. |2 ram | |
650 | 7 | |a Systèmes, identification des. |2 ram | |
650 | 7 | |a Statistique bayésienne. |2 ram | |
650 | 0 | 7 | |a Nichtlineare Schätzung. |2 swd |
650 | 0 | 7 | |a Parameterschätzung. |2 swd |
650 | 0 | 7 | |a Rekursive Parameterschätzung. |2 swd |
655 | 4 | |a Electronic books. | |
776 | 0 | 8 | |i Print version: |a Kulhavý, Rudolf, 1957- |t Recursive nonlinear estimation. |d Berlin ; New York : Springer, ©1996 |w (DLC) 96021895 |w (OCoLC)34731221 |
830 | 0 | |a Lecture notes in control and information sciences ; |v 216. | |
856 | 4 | 0 | |u http://link.springer.com/10.1007/BFb0031830 |y SpringerLink |
903 | |a HeVa | ||
929 | |a eresource | ||
999 | f | f | |i 31abf78a-9083-58db-9502-6446a9f90abb |s f3fde910-0d3e-5c7a-b144-f2f24e560ee6 |
928 | |t Library of Congress classification |a QA276.8 .K845 1996 |l Online |c UC-FullText |u http://link.springer.com/10.1007/BFb0031830 |z SpringerLink |g ebooks |i 9882656 |