Portfolio analysis : from probabilistic to credibilistic and uncertain approaches /

Saved in:
Bibliographic Details
Author / Creator:Huang, Xiaoxia.
Imprint:Berlin : Springer Verlag, 2010.
Description:1 online resource (ix, 182 pages) : illustrations.
Language:English
Series:Studies in fuzziness and soft computing, 1434-9922 ; v. 250
Studies in fuzziness and soft computing ; v. 250.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11074175
Hidden Bibliographic Details
ISBN:9783642112140
3642112145
1280003340
9781280003349
9783642112133
3642112137
Notes:Includes bibliographical references (pages 173-177 and index.
Print version record.
Summary:The most salient feature of security returns is uncertainty. The purpose of the book is to provide systematically a quantitative method for analyzing return and risk of a portfolio investment in different kinds of uncertainty and present the ways for striking a balance between investment return and risk such that an optimal portfolio can be obtained. In classical portfolio theory, security returns were assumed to be random variables, and probability theory was the main mathematical tool for handling uncertainty in the past. However, the world is complex and uncertainty is varied. Randomness is not the only type of uncertainty in reality, especially when human factors are included. Security market, one of the most complex markets in the world, contains almost all kinds of uncertainty. The security returns are sensitive to various factors including economic, social, political and very importantly, people{u2019}s psychological factors. Therefore, other than strict probability method, scholars have proposed some other approaches including imprecise probability, possibility, and interval set methods, etc., to deal with uncertainty in portfolio selection since 1990s. In this book, we want to add to the tools existing in science some new and unorthodox approaches for analyzing uncertainty of portfolio returns. When security returns are fuzzy, we use credibility which has self-duality property as the basic measure and employ credibility theory to help make selection decision such that the decision result will be consistent with the laws of contradiction and excluded middle. Being aware that one tool is not enough for solving complex practical problems, we further employ uncertain measure and uncertainty theory to help select an optimal portfolio when security returns behave neither randomly nor fuzzily.
Other form:Print version: Huang, Xiaoxia. Portfolio analysis. Berlin : Springer Verlag, 2010 9783642112133 3642112137

MARC

LEADER 00000cam a2200000Ia 4500
001 11074175
005 20170630045615.5
006 m o d
007 cr cn|||||||||
008 100524s2010 gw a ob 001 0 eng d
003 ICU
010 |a  2009941639 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d OCLCQ  |d CUS  |d UAB  |d Z5A  |d E7B  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d BEDGE  |d OCLCO  |d YDXCP  |d NLGGC  |d NUI  |d SLY  |d OCLCO  |d EBLCP  |d OCLCO  |d TXI  |d OCLCQ  |d OCLCO  |d VT2 
015 |a 09,N48,0023  |2 dnb 
016 7 |a 99803116X  |2 DE-101 
019 |a 587523539  |a 647897492  |a 771427202  |a 771427203  |a 781937299  |a 817066278  |a 824113668  |a 880329278  |a 889168655  |a 935286620  |a 985062039 
020 |a 9783642112140 
020 |a 3642112145 
020 |a 1280003340 
020 |a 9781280003349 
020 |z 9783642112133 
020 |z 3642112137 
035 |a (OCoLC)630107750  |z (OCoLC)587523539  |z (OCoLC)647897492  |z (OCoLC)771427202  |z (OCoLC)771427203  |z (OCoLC)781937299  |z (OCoLC)817066278  |z (OCoLC)824113668  |z (OCoLC)880329278  |z (OCoLC)889168655  |z (OCoLC)935286620  |z (OCoLC)985062039 
037 |a 978-3-642-11213-3  |b Springer  |n http://www.springerlink.com 
050 4 |a HG4529.5 
084 |a F830. 91  |2 clc 
049 |a MAIN 
100 1 |a Huang, Xiaoxia.  |0 http://id.loc.gov/authorities/names/no2008048172  |1 http://viaf.org/viaf/102532284 
245 1 0 |a Portfolio analysis :  |b from probabilistic to credibilistic and uncertain approaches /  |c Xiaoxia Huang. 
260 |a Berlin :  |b Springer Verlag,  |c 2010. 
300 |a 1 online resource (ix, 182 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Studies in fuzziness and soft computing,  |x 1434-9922 ;  |v v. 250 
504 |a Includes bibliographical references (pages 173-177 and index. 
588 0 |a Print version record. 
505 0 |a What Is Portfolio Analysis -- Probabilistic Portfolio Selection -- Credibilistic Portfolio Selection -- Uncertain Portfolio Selection -- Model Varieties. 
520 |a The most salient feature of security returns is uncertainty. The purpose of the book is to provide systematically a quantitative method for analyzing return and risk of a portfolio investment in different kinds of uncertainty and present the ways for striking a balance between investment return and risk such that an optimal portfolio can be obtained. In classical portfolio theory, security returns were assumed to be random variables, and probability theory was the main mathematical tool for handling uncertainty in the past. However, the world is complex and uncertainty is varied. Randomness is not the only type of uncertainty in reality, especially when human factors are included. Security market, one of the most complex markets in the world, contains almost all kinds of uncertainty. The security returns are sensitive to various factors including economic, social, political and very importantly, people{u2019}s psychological factors. Therefore, other than strict probability method, scholars have proposed some other approaches including imprecise probability, possibility, and interval set methods, etc., to deal with uncertainty in portfolio selection since 1990s. In this book, we want to add to the tools existing in science some new and unorthodox approaches for analyzing uncertainty of portfolio returns. When security returns are fuzzy, we use credibility which has self-duality property as the basic measure and employ credibility theory to help make selection decision such that the decision result will be consistent with the laws of contradiction and excluded middle. Being aware that one tool is not enough for solving complex practical problems, we further employ uncertain measure and uncertainty theory to help select an optimal portfolio when security returns behave neither randomly nor fuzzily. 
650 0 |a Portfolio management  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2008109870 
650 0 |a Probabilities  |x Mathematical models. 
650 0 |a Uncertainty  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2008113073 
650 4 |a Portfolio management  |x Mathematical models. 
650 4 |a Probabilities  |x Mathematical models. 
650 4 |a Uncertainty  |x Mathematical models. 
650 0 7 |a Probabilities  |x Mathematical models.  |2 cct 
650 0 7 |a Uncertainty  |x Mathematical models.  |2 cct 
650 0 7 |a Portfolio management  |x Mathematical models.  |2 cct 
650 7 |a Ingénierie.  |2 eclas 
650 7 |a Portfolio management  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01072082 
650 7 |a Probabilities  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01077743 
650 7 |a Uncertainty  |x Mathematical models.  |2 fast  |0 (OCoLC)fst01160835 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Huang, Xiaoxia.  |t Portfolio analysis.  |d Berlin : Springer Verlag, 2010  |z 9783642112133  |z 3642112137  |w (OCoLC)471803343 
830 0 |a Studies in fuzziness and soft computing ;  |v v. 250. 
856 4 0 |u http://link.springer.com/10.1007/978-3-642-11214-0  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 05b19a25-0b16-5c57-a67f-f1ee7804ee88  |s 6f4a9838-ddef-5e31-b981-01bc75e0519f 
928 |t Library of Congress classification  |a HG4529.5  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-642-11214-0  |z SpringerLink  |g ebooks  |i 9883074