Complex monge-ampère equations and geodesics in the space of kähler metrics /
Saved in:
Imprint: | Berlin ; New York : Springer, ©2012. |
---|---|
Description: | 1 online resource (viii, 310 pages). |
Language: | English |
Series: | Lecture notes in mathematics, 0075-8434 ; 2038 Lecture notes in mathematics (Springer-Verlag) ; 2038. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11076448 |
Table of Contents:
- 1. Introduction
- I. The Local Homogenious Dirichlet Problem.-2. Dirichlet Problem in Domains of Cn
- 3. Geometric Maximality
- II. Stochastic Analysis for the Monge-Ampère Equation
- 4. Probabilistic Approach to Regularity
- III. Monge-Ampère Equations on Compact Manifolds
- 5. The Calabi-Yau Theorem
- IV Geodesics in the Space of Kähler Metrics
- 6. The Riemannian Space of Kähler Metrics
- 7. MA Equations on Manifolds with Boundary
- 8. Bergman Geodesics.