Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains /

Saved in:
Bibliographic Details
Author / Creator:Mitrea, Irina.
Imprint:Berlin : Springer, ©2013.
Description:1 online resource (x, 424 pages).
Language:English
Series:Lecture notes in mathematics, 1617-9692 ; 2063
Lecture notes in mathematics (Springer-Verlag) ; 2063.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11077702
Hidden Bibliographic Details
Other authors / contributors:Mitrea, Marius.
ISBN:9783642326660
3642326668
9783642326653
364232665X
Notes:Includes bibliographical references and indexes.
Online resource; title from PDF title page (SpringerLink, viewed Jan. 9, 2013).
Summary:Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces, Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces.

MARC

LEADER 00000cam a2200000Ia 4500
001 11077702
005 20170630045415.4
006 m o d
007 cr cnu||||||||
008 130108s2013 gw ob 001 0 eng d
003 ICU
010 |a  2012951623 
040 |a HNK  |b eng  |e pn  |c HNK  |d HNK  |d GW5XE  |d COO  |d ZMC  |d YDXCP  |d SNK  |d HEBIS  |d OCLCF  |d OCLCQ  |d EBLCP  |d OCLCQ  |d VT2 
015 |a GBB2B5655  |2 bnb 
016 7 |a 016211438  |2 Uk 
019 |a 964894285  |a 985034569 
020 |a 9783642326660  |q (electronic bk.) 
020 |a 3642326668  |q (electronic bk.) 
020 |z 9783642326653 
020 |z 364232665X 
035 |a (OCoLC)823686652  |z (OCoLC)964894285  |z (OCoLC)985034569 
050 4 |a QA379  |b .M58 2013eb 
072 7 |a QA  |2 lcco 
049 |a MAIN 
100 1 |a Mitrea, Irina.  |0 http://id.loc.gov/authorities/names/no2013034542  |1 http://viaf.org/viaf/295247040 
245 1 0 |a Multi-layer potentials and boundary problems :  |b for higher-order elliptic systems in Lipschitz domains /  |c Irina Mitrea, Marius Mitrea. 
260 |a Berlin :  |b Springer,  |c ©2013. 
300 |a 1 online resource (x, 424 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture notes in mathematics,  |x 1617-9692 ;  |v 2063 
505 0 0 |t Introduction --  |t Smoothness Scales and Calderón-Zygmund Theory in the Scalar-Valued Case --  |t Function Spaces of Whitney Arrays --  |t The Double Multi-Layer Potential Operator --  |t The Single Multi-Layer Potential Operator --  |t Functional Analytic Properties of Multi-Layer Potentials and Boundary Value Problems. 
504 |a Includes bibliographical references and indexes. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed Jan. 9, 2013). 
520 |a Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces, Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces. 
650 0 |a Boundary value problems.  |0 http://id.loc.gov/authorities/subjects/sh85016102 
650 0 |a Differential equations, Elliptic.  |0 http://id.loc.gov/authorities/subjects/sh85037895 
650 0 |a Lipschitz spaces.  |0 http://id.loc.gov/authorities/subjects/sh99003370 
650 7 |a Boundary value problems.  |2 fast  |0 (OCoLC)fst00837122 
650 7 |a Differential equations, Elliptic.  |2 fast  |0 (OCoLC)fst00893458 
650 7 |a Lipschitz spaces.  |2 fast  |0 (OCoLC)fst00999438 
650 7 |a Elliptisches System  |2 gnd  |0 (DE-588)4121184-4 
650 7 |a Ordnung n  |2 gnd  |0 (DE-588)4322729-6 
650 7 |a Randwertproblem  |2 gnd  |0 (DE-588)4048395-2 
655 4 |a Electronic books. 
700 1 |a Mitrea, Marius.  |0 http://id.loc.gov/authorities/names/n94020722  |1 http://viaf.org/viaf/2144648124538616863 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 2063. 
856 4 0 |u http://link.springer.com/10.1007/978-3-642-32666-0  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 254095b8-0d9f-5267-a4fd-149e8b5a43db  |s a7940569-5fd1-57c0-90dc-f29554f4dce9 
928 |t Library of Congress classification  |a QA379 .M58 2013eb  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-642-32666-0  |z SpringerLink  |g ebooks  |i 9887892