Multi-layer potentials and boundary problems : for higher-order elliptic systems in Lipschitz domains /
Saved in:
Author / Creator: | Mitrea, Irina. |
---|---|
Imprint: | Berlin : Springer, ©2013. |
Description: | 1 online resource (x, 424 pages). |
Language: | English |
Series: | Lecture notes in mathematics, 1617-9692 ; 2063 Lecture notes in mathematics (Springer-Verlag) ; 2063. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11077702 |
MARC
LEADER | 00000cam a2200000Ia 4500 | ||
---|---|---|---|
001 | 11077702 | ||
005 | 20170630045415.4 | ||
006 | m o d | ||
007 | cr cnu|||||||| | ||
008 | 130108s2013 gw ob 001 0 eng d | ||
003 | ICU | ||
010 | |a 2012951623 | ||
040 | |a HNK |b eng |e pn |c HNK |d HNK |d GW5XE |d COO |d ZMC |d YDXCP |d SNK |d HEBIS |d OCLCF |d OCLCQ |d EBLCP |d OCLCQ |d VT2 | ||
015 | |a GBB2B5655 |2 bnb | ||
016 | 7 | |a 016211438 |2 Uk | |
019 | |a 964894285 |a 985034569 | ||
020 | |a 9783642326660 |q (electronic bk.) | ||
020 | |a 3642326668 |q (electronic bk.) | ||
020 | |z 9783642326653 | ||
020 | |z 364232665X | ||
035 | |a (OCoLC)823686652 |z (OCoLC)964894285 |z (OCoLC)985034569 | ||
050 | 4 | |a QA379 |b .M58 2013eb | |
072 | 7 | |a QA |2 lcco | |
049 | |a MAIN | ||
100 | 1 | |a Mitrea, Irina. |0 http://id.loc.gov/authorities/names/no2013034542 |1 http://viaf.org/viaf/295247040 | |
245 | 1 | 0 | |a Multi-layer potentials and boundary problems : |b for higher-order elliptic systems in Lipschitz domains / |c Irina Mitrea, Marius Mitrea. |
260 | |a Berlin : |b Springer, |c ©2013. | ||
300 | |a 1 online resource (x, 424 pages). | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia |0 http://id.loc.gov/vocabulary/mediaTypes/c | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics, |x 1617-9692 ; |v 2063 | |
505 | 0 | 0 | |t Introduction -- |t Smoothness Scales and Calderón-Zygmund Theory in the Scalar-Valued Case -- |t Function Spaces of Whitney Arrays -- |t The Double Multi-Layer Potential Operator -- |t The Single Multi-Layer Potential Operator -- |t Functional Analytic Properties of Multi-Layer Potentials and Boundary Value Problems. |
504 | |a Includes bibliographical references and indexes. | ||
588 | 0 | |a Online resource; title from PDF title page (SpringerLink, viewed Jan. 9, 2013). | |
520 | |a Many phenomena in engineering and mathematical physics can be modeled by means of boundary value problems for a certain elliptic differential operator in a given domain. When the differential operator under discussion is of second order a variety of tools are available for dealing with such problems, including boundary integral methods, variational methods, harmonic measure techniques, and methods based on classical harmonic analysis. When the differential operator is of higher-order (as is the case, e.g., with anisotropic plate bending when one deals with a fourth order operator) only a few options could be successfully implemented. In the 1970s Alberto Calderón, one of the founders of the modern theory of Singular Integral Operators, advocated the use of layer potentials for the treatment of higher-order elliptic boundary value problems. The present monograph represents the first systematic treatment based on this approach. This research monograph lays, for the first time, the mathematical foundation aimed at solving boundary value problems for higher-order elliptic operators in non-smooth domains using the layer potential method and addresses a comprehensive range of topics, dealing with elliptic boundary value problems in non-smooth domains including layer potentials, jump relations, non-tangential maximal function estimates, multi-traces and extensions, boundary value problems with data in Whitney-Lebesque spaces, Whitney-Besov spaces, Whitney-Sobolev- based Lebesgue spaces, Whitney-Triebel-Lizorkin spaces, Whitney-Sobolev-based Hardy spaces, Whitney-BMO and Whitney-VMO spaces. | ||
650 | 0 | |a Boundary value problems. |0 http://id.loc.gov/authorities/subjects/sh85016102 | |
650 | 0 | |a Differential equations, Elliptic. |0 http://id.loc.gov/authorities/subjects/sh85037895 | |
650 | 0 | |a Lipschitz spaces. |0 http://id.loc.gov/authorities/subjects/sh99003370 | |
650 | 7 | |a Boundary value problems. |2 fast |0 (OCoLC)fst00837122 | |
650 | 7 | |a Differential equations, Elliptic. |2 fast |0 (OCoLC)fst00893458 | |
650 | 7 | |a Lipschitz spaces. |2 fast |0 (OCoLC)fst00999438 | |
650 | 7 | |a Elliptisches System |2 gnd |0 (DE-588)4121184-4 | |
650 | 7 | |a Ordnung n |2 gnd |0 (DE-588)4322729-6 | |
650 | 7 | |a Randwertproblem |2 gnd |0 (DE-588)4048395-2 | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Mitrea, Marius. |0 http://id.loc.gov/authorities/names/n94020722 |1 http://viaf.org/viaf/2144648124538616863 | |
830 | 0 | |a Lecture notes in mathematics (Springer-Verlag) ; |v 2063. | |
856 | 4 | 0 | |u http://link.springer.com/10.1007/978-3-642-32666-0 |y SpringerLink |
903 | |a HeVa | ||
929 | |a eresource | ||
999 | f | f | |i 254095b8-0d9f-5267-a4fd-149e8b5a43db |s a7940569-5fd1-57c0-90dc-f29554f4dce9 |
928 | |t Library of Congress classification |a QA379 .M58 2013eb |l Online |c UC-FullText |u http://link.springer.com/10.1007/978-3-642-32666-0 |z SpringerLink |g ebooks |i 9887892 |