Composite asymptotic expansions /

Saved in:
Bibliographic Details
Author / Creator:Fruchard, Augustin.
Imprint:Berlin : Springer, ©2013.
Description:1 online resource (x, 161 pages) : illustrations.
Language:English
Series:Lecture notes in mathematics, 1617-9692 ; 2066
Lecture notes in mathematics (Springer-Verlag) ; 2066.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11077756
Hidden Bibliographic Details
Other authors / contributors:Schäfke, Reinhard.
ISBN:9783642340352
3642340350
9783642340345
3642340342
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed Dec. 19, 2012).
Summary:The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O'Malley resonance problem is solved.

MARC

LEADER 00000cam a2200000Ia 4500
001 11077756
005 20170630050155.1
006 m o d
007 cr cnu||||||||
008 121219s2013 gw a ob 001 0 eng d
003 ICU
010 |a  2012953999 
040 |a HNK  |b eng  |e pn  |c HNK  |d HNK  |d GW5XE  |d I9W  |d YDXCP  |d COO  |d ZMC  |d E7B  |d HEBIS  |d OCLCF  |d OCLCQ  |d EBLCP  |d VT2 
016 7 |a 016260556  |2 Uk 
019 |a 964890155  |a 985037574 
020 |a 9783642340352  |q (electronic bk.) 
020 |a 3642340350  |q (electronic bk.) 
020 |z 9783642340345 
020 |z 3642340342 
035 |a (OCoLC)822020531  |z (OCoLC)964890155  |z (OCoLC)985037574 
050 4 |a QA431  |b .F78 2013eb 
072 7 |a QA  |2 lcco 
049 |a MAIN 
100 1 |a Fruchard, Augustin.  |0 http://id.loc.gov/authorities/names/no2013033959  |1 http://viaf.org/viaf/284894121 
245 1 0 |a Composite asymptotic expansions /  |c Augustin Fruchard, Reinhard Schäfke. 
260 |a Berlin :  |b Springer,  |c ©2013. 
300 |a 1 online resource (x, 161 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes in mathematics,  |x 1617-9692 ;  |v 2066 
505 0 0 |t Four Introductory Examples --  |t Composite Asymptotic Expansions: General Study --  |t Composite Asymptotic Expansions: Gevrey Theory --  |t A Theorem of Ramis-Sibuya Type --  |t Composite Expansions and Singularly Perturbed Differential Equations --  |t Applications --  |t Historical Remarks. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed Dec. 19, 2012). 
520 |a The purpose of these lecture notes is to develop a theory of asymptotic expansions for functions involving two variables, while at the same time using functions involving one variable and functions of the quotient of these two variables. Such composite asymptotic expansions (CAsEs) are particularly well-suited to describing solutions of singularly perturbed ordinary differential equations near turning points. CAsEs imply inner and outer expansions near turning points. Thus our approach is closely related to the method of matched asymptotic expansions. CAsEs offer two unique advantages, however. First, they provide uniform expansions near a turning point and away from it. Second, a Gevrey version of CAsEs is available and detailed in the lecture notes. Three problems are presented in which CAsEs are useful. The first application concerns canard solutions near a multiple turning point. The second application concerns so-called non-smooth or angular canard solutions. Finally an Ackerberg-O'Malley resonance problem is solved. 
650 0 |a Asymptotic expansions.  |0 http://id.loc.gov/authorities/subjects/sh85009056 
650 0 |a Differential equations  |x Asymptotic theory.  |0 http://id.loc.gov/authorities/subjects/sh85037891 
650 0 |a Integral equations  |x Asymptotic theory.  |0 http://id.loc.gov/authorities/subjects/sh85067089 
650 7 |a Asymptotic expansions.  |2 fast  |0 (OCoLC)fst00819868 
650 7 |a Differential equations  |x Asymptotic theory.  |2 fast  |0 (OCoLC)fst00893447 
650 7 |a Integral equations  |x Asymptotic theory.  |2 fast  |0 (OCoLC)fst00975508 
650 7 |a Asymptotische Entwicklung  |2 gnd  |0 (DE-588)4112609-9 
650 7 |a Gewöhnliche Differentialgleichung  |2 gnd  |0 (DE-588)4020929-5 
655 4 |a Electronic books. 
700 1 |a Schäfke, Reinhard.  |0 http://id.loc.gov/authorities/names/no2013034290  |1 http://viaf.org/viaf/283238928 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 2066. 
856 4 0 |u http://link.springer.com/10.1007/978-3-642-34035-2  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i ed6a3fce-0239-573a-b19f-308f4291b8c8  |s 232fe6a5-7fad-5a96-9820-5cf796233740 
928 |t Library of Congress classification  |a QA431 .F78 2013eb  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-642-34035-2  |z SpringerLink  |g ebooks  |i 9887946