Advanced neural network-based computational schemes for robust fault diagnosis /

Saved in:
Bibliographic Details
Author / Creator:Mrugalski, Marcin, author.
Imprint:Cham : Springer, [2013]
©2014
Description:1 online resource (xii, 168 pages).
Language:English
Series:Studies in Computational Intelligence, 1860-949X ; v.510
Studies in computational intelligence ; v.510,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11080080
Hidden Bibliographic Details
ISBN:9783319015477
3319015478
9783319015460
331901546X
9783319015460
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed August 20, 2013).
Summary:The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.
Other form:Printed edition: 9783319015460
Standard no.:10.1007/978-3-319-01547-7

MARC

LEADER 00000cam a2200000Ki 4500
001 11080080
005 20170630044453.3
006 m o d
007 cr cnu|||unuuu
008 130828t20132014sz ob 001 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d COO  |d YDXCP  |d OCLCF  |d BEDGE  |d ZMC  |d NUI  |d VT2  |d OH1  |d OCLCQ  |d DIBIB  |d EBLCP  |d Z5A 
019 |a 859589585  |a 900018594  |a 912396830  |a 985060901  |a 988818409 
020 |a 9783319015477  |q (electronic bk.) 
020 |a 3319015478  |q (electronic bk.) 
020 |z 9783319015460 
020 |a 331901546X 
020 |a 9783319015460 
024 7 |a 10.1007/978-3-319-01547-7  |2 doi 
035 |a (OCoLC)857140142  |z (OCoLC)859589585  |z (OCoLC)900018594  |z (OCoLC)912396830  |z (OCoLC)985060901  |z (OCoLC)988818409 
050 4 |a QA76.87 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
049 |a MAIN 
100 1 |a Mrugalski, Marcin,  |e author.  |0 http://id.loc.gov/authorities/names/nb2013020453  |1 http://viaf.org/viaf/305253233 
245 1 0 |a Advanced neural network-based computational schemes for robust fault diagnosis /  |c Marcin Mrugalski. 
264 1 |a Cham :  |b Springer,  |c [2013] 
264 4 |c ©2014 
300 |a 1 online resource (xii, 168 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v v.510 
505 0 0 |t Designing of dynamic neural networks --  |t Estimation methods in training of ANNs for robust fault diagnosis --  |t MLP in robust fault detection of static non-linear systems --  |t GMDH networks in robust fault detection of dynamic non-linear systems --  |t State-space GMDH networks for actuator robust FDI. 
520 |a The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems. A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered. All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 20, 2013). 
650 0 |a Neural networks (Computer science)  |0 http://id.loc.gov/authorities/subjects/sh90001937 
650 0 |a Fault location (Engineering)  |0 http://id.loc.gov/authorities/subjects/sh85047487 
650 0 |a Robust control. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics) 
650 2 4 |a Complexity. 
650 2 4 |a Control. 
650 7 |a Ingénierie.  |2 eclas 
650 7 |a Fault location (Engineering)  |2 fast  |0 (OCoLC)fst00921982 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260 
650 7 |a Robust control.  |2 fast  |0 (OCoLC)fst01099109 
655 4 |a Electronic books. 
655 7 |a Ebook.  |2 local 
776 0 8 |i Printed edition:  |z 9783319015460 
830 0 |a Studies in computational intelligence ;  |v v.510,  |x 1860-949X 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-01547-7  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 8c2500fb-d041-5edf-a2ae-8050fc90fcb6  |s 4c55e2c9-b0de-57bd-8d3c-ce51ec2e9244 
928 |t Library of Congress classification  |a QA76.87  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-01547-7  |z SpringerLink  |g ebooks  |i 9890305