Topics in fixed point theory /

Saved in:
Bibliographic Details
Imprint:Cham : Springer, 2014.
Description:1 online resource (xi, 304 pages)
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11081860
Hidden Bibliographic Details
Other authors / contributors:Almezel, Saleh, editor.
Ansari, Qamrul Hasan, editor.
Khamsi, Mohamed A., editor.
ISBN:9783319015866
3319015869
9783319015859
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed October 28, 2013).
Summary:The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland's variational principle.
Standard no.:10.1007/978-3-319-01586-6

MARC

LEADER 00000cam a2200000Ki 4500
001 11081860
005 20170630044521.7
006 m o d
007 cr cnu|||unuuu
008 131205s2014 sz ob 001 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDXCP  |d IDEBK  |d N$T  |d COO  |d GGVRL  |d TPH  |d OCLCF  |d OCLCQ  |d ZMC  |d Z5A 
019 |a 960994312  |a 965410510 
020 |a 9783319015866  |q (electronic bk.) 
020 |a 3319015869  |q (electronic bk.) 
020 |z 9783319015859 
024 7 |a 10.1007/978-3-319-01586-6  |2 doi 
035 |a (OCoLC)864713220  |z (OCoLC)960994312  |z (OCoLC)965410510 
050 4 |a QA329.9 
060 4 |a Online Book 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
049 |a MAIN 
245 0 0 |a Topics in fixed point theory /  |c Saleh Almezel, Qamrul Hasan Ansari, Mohamed Amine Khamsi, editors. 
264 1 |a Cham :  |b Springer,  |c 2014. 
300 |a 1 online resource (xi, 304 pages) 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
505 0 0 |t Introduction to Metric Fixed Point Theory /  |r M.A. Khamsi --  |t Banach Contraction Principle and its Generalizations /  |r Abdul Latif --  |t Ekeland's Variational Principle and Its Extensions with Applications /  |r Qamrul Hasan Ansari --  |t Fixed Point Theory in Hyperconvex Metric Spaces /  |r Rafael Espinola and Aurora Fernandez-Leon --  |t An Introduction to Fixed Point Theory in Modular Function Spaces /  |r W.M. Kozlowski --  |t Fixed Point Theory in Ordered Sets from the Metric Point of View /  |r M.Z. Abu-Sbeih and M.A. Khamsi --  |t Some Fundamental Topological Fixed Point Theorems for Set-Valued Maps /  |r Hichem Ben-El-Mechaiekh --  |t Some Iterative Methods for Fixed Point Problems /  |r Q.H. Ansari and D.R. Sahu. 
520 |a The purpose of this contributed volume is to provide a primary resource for anyone interested in fixed point theory with a metric flavor. The book presents information for those wishing to find results that might apply to their own work and for those wishing to obtain a deeper understanding of the theory. The book should be of interest to a wide range of researchers in mathematical analysis as well as to those whose primary interest is the study of fixed point theory and the underlying spaces. The level of exposition is directed to a wide audience, including students and established researchers. Key topics covered include Banach contraction theorem, hyperconvex metric spaces, modular function spaces, fixed point theory in ordered sets, topological fixed point theory for set-valued maps, coincidence theorems, Lefschetz and Nielsen theories, systems of nonlinear inequalities, iterative methods for fixed point problems, and the Ekeland's variational principle. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed October 28, 2013). 
504 |a Includes bibliographical references and index. 
650 0 |a Fixed point theory.  |0 http://id.loc.gov/authorities/subjects/sh85048934 
650 1 2 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Optimization. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Fixed point theory.  |2 fast  |0 (OCoLC)fst00926886 
655 4 |a Electronic books. 
700 1 |a Almezel, Saleh,  |e editor.  |1 http://viaf.org/viaf/306283731 
700 1 |a Ansari, Qamrul Hasan,  |e editor.  |0 http://id.loc.gov/authorities/names/no2011182414  |1 http://viaf.org/viaf/189392662 
700 1 |a Khamsi, Mohamed A.,  |e editor.  |0 http://id.loc.gov/authorities/names/n90707621  |1 http://viaf.org/viaf/69008075 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-01586-6  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 1f699817-ccb4-59ef-be49-439a9b4c920d  |s 8ceed6da-ac4f-50fd-a877-740e0a7ff9d4 
928 |t Library of Congress classification  |a QA329.9  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-01586-6  |z SpringerLink  |g ebooks  |i 9892091