Variable ordering structures in vector optimization /

Saved in:
Bibliographic Details
Author / Creator:Eichfelder, Gabriele, author.
Imprint:Heidelberg ; New York : Springer, 2014.
Description:1 online resource.
Language:English
Series:Vector optimization
Vector optimization.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11084362
Hidden Bibliographic Details
ISBN:9783642542831
3642542832
3642542824
9783642542824
9783642542824
Notes:Print version record.
Summary:This book provides an introduction to vector optimization with variable ordering structures, id est, to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice.
Other form:Print version: Eichfelder, Gabriele. Variable ordering structures in vector optimization 3642542824
Standard no.:10.1007/978-3-642-54283-1

MARC

LEADER 00000cam a2200000Ii 4500
001 11084362
005 20170630045420.2
006 m o d
007 cr cnu---unuuu
008 140417s2014 gw o 000 0 eng d
003 ICU
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d GW5XE  |d IDEBK  |d E7B  |d YDXCP  |d COO  |d CDX  |d A7U  |d UWO  |d OCLCF  |d BEDGE  |d EBLCP  |d HEBIS  |d OCLCQ  |d JG0  |d Z5A 
019 |a 881166061 
020 |a 9783642542831  |q (electronic bk.) 
020 |a 3642542832  |q (electronic bk.) 
020 |a 3642542824  |q (print) 
020 |a 9783642542824  |q (print) 
020 |z 9783642542824 
024 7 |a 10.1007/978-3-642-54283-1  |2 doi 
035 |a (OCoLC)876911611  |z (OCoLC)881166061 
050 4 |a QA402.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
049 |a MAIN 
100 1 |a Eichfelder, Gabriele,  |e author.  |0 http://id.loc.gov/authorities/names/no2008149669  |1 http://viaf.org/viaf/30688110 
245 1 0 |a Variable ordering structures in vector optimization /  |c Gabriele Eichfelder. 
264 1 |a Heidelberg ;  |a New York :  |b Springer,  |c 2014. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Vector optimization 
588 0 |a Print version record. 
520 |a This book provides an introduction to vector optimization with variable ordering structures, id est, to optimization problems with a vector-valued objective function where the elements in the objective space are compared based on a variable ordering structure: instead of a partial ordering defined by a convex cone, we see a whole family of convex cones, one attached to each element of the objective space. The book starts by presenting several applications that have recently sparked new interest in these optimization problems, and goes on to discuss fundamentals and important results on a wide range of topics. The theory developed includes various optimality notions, linear and nonlinear scalarization functionals, optimality conditions of Fermat and Lagrange type, existence and duality results. The book closes with a collection of numerical approaches for solving these problems in practice. 
505 0 |a 1 Variable ordering structures -- 2 Optimality concepts and their characterization -- 3 Properties of cone-valued maps -- 4 Linear scalarizations -- 5 Nonlinear scalarizations -- 6 Scalarization for variable orderings given by Bishop-Phelps cones -- 7 Optimality conditions -- 8 Duality results -- 9 Numerical methods -- 10 Outlook and further application areas. 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127 
650 0 |a Vector analysis.  |0 http://id.loc.gov/authorities/subjects/sh85142449 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Science économique.  |2 eclas 
650 7 |a Affaires.  |2 eclas 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099 
650 7 |a Vector analysis.  |2 fast  |0 (OCoLC)fst01164651 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Eichfelder, Gabriele.  |t Variable ordering structures in vector optimization  |z 3642542824  |w (OCoLC)868397550 
830 0 |a Vector optimization.  |0 http://id.loc.gov/authorities/names/no2008173880 
856 4 0 |u http://link.springer.com/10.1007/978-3-642-54283-1  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 97894c2d-c07f-50a9-8198-5932d4c97104  |s c809cf7d-376e-5976-adee-0789dab970ff 
928 |t Library of Congress classification  |a QA402.5  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-642-54283-1  |z SpringerLink  |g ebooks  |i 9894600