Mathematical and numerical methods for partial differential equations : applications for engineering sciences /

Saved in:
Bibliographic Details
Author / Creator:Chaskalovic, J. (Joël), author.
Imprint:Cham : Springer, 2014.
Description:1 online resource (xiv, 358 pages) : illustrations.
Language:English
Series:Mathematical Engineering, 2192-4732
Mathematical engineering,
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11085482
Hidden Bibliographic Details
ISBN:9783319035635
3319035630
3319035622
9783319035628
9783319035628
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed June 6, 2014).
Summary:This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic.
Other form:Printed edition: 9783319035628
Standard no.:10.1007/978-3-319-03563-5

MARC

LEADER 00000cam a2200000Ii 4500
001 11085482
005 20170630045646.2
006 m o d
007 cr cnu|||unuuu
008 140606s2014 sz a ob 001 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d COO  |d YDXCP  |d OCLCF  |d UPM  |d EBLCP  |d OCLCQ  |d JG0  |d OCLCQ  |d VT2  |d Z5A 
019 |a 985063175 
020 |a 9783319035635  |q (electronic bk.) 
020 |a 3319035630  |q (electronic bk.) 
020 |a 3319035622  |q (print) 
020 |a 9783319035628  |q (print) 
020 |z 9783319035628 
024 7 |a 10.1007/978-3-319-03563-5  |2 doi 
035 |a (OCoLC)881054935  |z (OCoLC)985063175 
050 4 |a QA377 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a MAT006000  |2 bisacsh 
049 |a MAIN 
100 1 |a Chaskalovic, J.  |q (Joël),  |e author.  |0 http://id.loc.gov/authorities/names/no2009023546  |1 http://viaf.org/viaf/49471782 
245 1 0 |a Mathematical and numerical methods for partial differential equations :  |b applications for engineering sciences /  |c Joël Chaskalovic. 
264 1 |a Cham :  |b Springer,  |c 2014. 
300 |a 1 online resource (xiv, 358 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathematical Engineering,  |x 2192-4732 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed June 6, 2014). 
505 0 |a From the Contents: Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems -- Finite Elements and differential Introduction to functional analytical methods of partial differential equations -- The finite element method -- Variational Formulations of elliptic boundary problems. 
520 |a This self-tutorial offers a concise yet thorough introduction into the mathematical analysis of approximation methods for partial differential equation. A particular emphasis is put on finite element methods. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. This English edition is based on the Finite Element Methods for Engineering Sciences by Joel Chaskalovic. 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 0 |a Differential equations, Partial  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85037915 
650 0 |a Finite element method.  |0 http://id.loc.gov/authorities/subjects/sh85048349 
650 1 4 |a Mathematics. 
650 2 4 |a Numerical Analysis. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Partial Differential Equations. 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
650 7 |a Finite element method.  |2 fast  |0 (OCoLC)fst00924897 
655 4 |a Electronic books. 
776 0 8 |i Printed edition:  |z 9783319035628 
830 0 |a Mathematical engineering,  |x 2192-4732 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-03563-5  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i fec178ef-fd93-5ee7-9b32-d1de9375aba0  |s e5a8768f-6874-5f34-aa20-b7f9d5cdddbf 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-03563-5  |z SpringerLink  |g ebooks  |i 9895720