Astronomy and Big Data : a Data Clustering Approach to Identifying Uncertain Galaxy Morphology.

Saved in:
Bibliographic Details
Author / Creator:Edwards, Kieran Jay.
Imprint:Dordrecht : Springer, 2014.
Description:1 online resource (112 pages).
Language:English
Series:Studies in Big Data
Studies in big data.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11085569
Hidden Bibliographic Details
Other authors / contributors:Gaber, Mohamed Medhat.
ISBN:9783319065991
3319065998
1306702550
9781306702553
331906598X
9783319065984
Notes:Includes bibliographical references and index.
Print version record.
Summary:With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain". This book reports on how to use data mining, more specifically clustering, to identify gal.
Other form:Print version: Edwards, Kieran Jay. Astronomy and Big Data : A Data Clustering Approach to Identifying Uncertain Galaxy Morphology. Dordrecht : Springer, ©2014 9783319065984
Standard no.:10.1007/978-3-319-06599-1

MARC

LEADER 00000cam a2200000Mi 4500
001 11085569
005 20170630045845.6
006 m o d
007 cr |n|||||||||
008 140607s2014 ne ob 001 0 eng d
003 ICU
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d HEBIS  |d OCLCQ  |d IDEBK  |d E7B  |d YDXCP  |d GW5XE  |d A7U  |d COO  |d CDX  |d UWO  |d OCLCF  |d BEDGE  |d OCLCQ  |d Z5A 
019 |a 878920960 
020 |a 9783319065991 
020 |a 3319065998 
020 |a 1306702550  |q (ebk) 
020 |a 9781306702553  |q (ebk) 
020 |a 331906598X  |q (print) 
020 |a 9783319065984  |q (print) 
024 7 |a 10.1007/978-3-319-06599-1  |2 doi 
035 |a (OCoLC)881165973  |z (OCoLC)878920960 
037 |a 601506  |b MIL 
050 4 |a QB51.3 
049 |a MAIN 
100 1 |a Edwards, Kieran Jay.  |0 http://id.loc.gov/authorities/names/no2014105450  |1 http://viaf.org/viaf/309916052 
245 1 0 |a Astronomy and Big Data :  |b a Data Clustering Approach to Identifying Uncertain Galaxy Morphology. 
260 |a Dordrecht :  |b Springer,  |c 2014. 
300 |a 1 online resource (112 pages). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Studies in Big Data 
588 0 |a Print version record. 
505 0 |a Preface; Acknowledgements; Contents; Introduction; 1.1 Background; 1.2 Aims and Objectives; 1.3 Book Organisation; Astronomy, Galaxies and Stars: An Overview; 2.1 Why Astronomy?; 2.2 Galaxies and Stars; 2.2.1 Galaxy Morphology; 2.3 The Big Bang Theory; 2.4 Summary; Astronomical Data Mining; 3.1 Data Mining: Definition; 3.1.1 Applications and Challenges; 3.2 Galaxy Zoo: Citizen Science; 3.3 Galaxy Zoo/SDSS Data; 3.4 Data Pre-processing and Attribute Selection; 3.5 Applied Techniques/Tasks; 3.6 Summary and Discussion; Adopted Data Mining Methods. 
505 8 |a 4.1 CRoss-Industry Standard Process for Data Mining (CRISP-DM)4.2 K-Means; 4.3 Support Vector Machines; 4.3.1 Sequential Minimal Optimisation; 4.4 Random Forests; 4.5 Incremental Feature Selection (IFS) Algorithm; 4.6 Pre- and Post-processing; 4.6.1 Pre-processing; 4.6.2 Post-processing; 4.7 Summary; Research Methodology; 5.1 Galaxy Zoo Table 2; 5.2 Data Mining the Galaxy Zoo Mergers; 5.3 Extensive SDSS Data Analysis; 5.3.1 Isolating and Re-Clustering Galaxies Labelled as; Development of Data Mining Models; 6.1 Waikato Environment for Knowledge Analysis (WEKA); 6.1.1 WEKA Implementations. 
505 8 |a 6.1.2 Initial Experimentation on Galaxy Zoo Table 2 Data Set6.1.3 Experiments with; 6.2 R Language and RStudio; 6.2.1 RStudio Implementation; 6.3 MySQL Database Queries; 6.4 Development of Knowledge-Flow Models; 6.5 Summary; Experimentation Results; 7.1 Galaxy Zoo Table 2 Clustering Results; 7.2 Clustering Results of Lowest DBI Attributes; 7.3 Extensive SDSS Analysis Results; 7.4 Results of; 7.5 Results of Further Experimentation; 7.6 Summary; Conclusion and FutureWork; 8.1 Conclusion; 8.1.1 Experimental Remarks; 8.2 Future Work and Big Data; 8.2.1 Analysis of Data Storage Representation. 
505 8 |a 8.2.2 Output Storage Representation8.2.3 Data Mining and Storage Workflow; 8.2.4 Development and Adoption of Data Mining Techniques; 8.2.5 Providing Astronomers with Insights; 8.3 FinalWords; References; Index. 
520 |a With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as "Uncertain". This book reports on how to use data mining, more specifically clustering, to identify gal. 
504 |a Includes bibliographical references and index. 
650 0 |a Astronomy  |x Data processing.  |0 http://id.loc.gov/authorities/subjects/sh88006526 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073 
650 7 |a Ingénierie.  |2 eclas 
650 7 |a Astronomy  |x Data processing.  |2 fast  |0 (OCoLC)fst00819685 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
655 4 |a Electronic books. 
700 1 |a Gaber, Mohamed Medhat.  |0 http://id.loc.gov/authorities/names/n2008001603  |1 http://viaf.org/viaf/101200490 
776 0 8 |i Print version:  |a Edwards, Kieran Jay.  |t Astronomy and Big Data : A Data Clustering Approach to Identifying Uncertain Galaxy Morphology.  |d Dordrecht : Springer, ©2014  |z 9783319065984 
830 0 |a Studies in big data.  |0 http://id.loc.gov/authorities/names/no2014005813 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-06599-1  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i fdb2de14-eaee-5a1c-a0c5-a346b96124f6  |s 0373b1c1-c945-5bf0-a553-600d7b647fe4 
928 |t Library of Congress classification  |a QB51.3  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-06599-1  |z SpringerLink  |g ebooks  |i 9895807