Algebraic monoids, group embeddings, and algebraic combinatorics /

Saved in:
Bibliographic Details
Imprint:New York, NY : Springer, 2014.
Description:1 online resource (x, 354 pages) : illustrations (some color).
Language:English
Series:Fields Institute Communications, 1069-5265 ; volume 71
Fields Institute communications ; v. 71.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11085784
Hidden Bibliographic Details
Other authors / contributors:Can, Mahir, editor.
Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics (Workshop) (2012 : Toronto, Ont.)
ISBN:9781493909384
149390938X
1493909371
9781493909377
9781493909377
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed June 23, 2014).
Summary:This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge-Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly [pi]-regular. Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics, and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings, and algebraic combinatorics merged under the umbrella of algebraic monoids.
Other form:Printed edition: 9781493909377
Standard no.:10.1007/978-1-4939-0938-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11085784
005 20170630045310.2
006 m o d
007 cr cnu|||unuuu
008 140623s2014 nyua ob 100 0 eng d
003 ICU
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d N$T  |d YDXCP  |d COO  |d UKMGB  |d OCLCF  |d E7B  |d EBLCP  |d DEBSZ  |d OCLCO  |d OHI  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCL  |d OCLCO  |d JG0  |d Z5A 
016 7 |a 016796093  |2 Uk 
019 |a 891398725 
020 |a 9781493909384  |q (electronic bk.) 
020 |a 149390938X  |q (electronic bk.) 
020 |a 1493909371  |q (print) 
020 |a 9781493909377  |q (print) 
020 |z 9781493909377 
024 7 |a 10.1007/978-1-4939-0938-4  |2 doi 
035 |a (OCoLC)881617577  |z (OCoLC)891398725 
050 4 |a QA169 
072 7 |a PBV  |2 bicssc 
072 7 |a MAT036000  |2 bisacsh 
072 7 |a MAT  |x 002040  |2 bisacsh 
049 |a MAIN 
245 0 0 |a Algebraic monoids, group embeddings, and algebraic combinatorics /  |c Mahir Can, Zhenheng Li, Benjamin Steinberg, Qiang Wang, editors. 
264 1 |a New York, NY :  |b Springer,  |c 2014. 
300 |a 1 online resource (x, 354 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Fields Institute Communications,  |x 1069-5265 ;  |v volume 71 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed June 23, 2014). 
505 0 |a On Algebraic Semi groups and Monoids (M. Brion) -- Algebraic Semi groups are Strongly [pi]-regular (M. Brion, L.E. Renner) -- Rees Theorem and Quotients in Linear Algebraic Semi groups (M.S. Putcha) -- Representations of Reductive Normal Algebraic Monoids (S. Doty) -- On Linear Hodge Newton Decomposition for Reductive Monoids (S. Varma) -- The Structure of Affine Algebraic Monoids in Terms of Kernel Data (W. Huang) -- Algebraic Monoids and Renner Monoids (Z. Li, Z. Li, Y. Cao) -- Conjugacy Decomposition of Canonical and Dual Canonical Monoids (R.K. Therkelsen) -- The Endomorphisms Monoid of a Homogeneous Vector Bundle (L. Brambila-Paz and A. Rittatore) -- On Certain Semi groups Derived from Associative Algebras (J. Okniński) -- The Betti Numbers of Simple Embeddings (L.E. Renner) -- SL(2)-regular Subvarieties of Complete Quadratics (M.B. Can, M. Joyce) -- Markov Chains for Promotion Operators (A. Ayyer, S. Klee, A. Schilling) -- Fomin-Greene Monoids and Pieri Operations (C. Benedetti, N. Bergeron) -- Affine Permutations and an Affine Catalan Monoid (T. Denton). 
520 |a This book contains a collection of fifteen articles and is dedicated to the sixtieth birthdays of Lex Renner and Mohan Putcha, the pioneers of the field of algebraic monoids. Topics presented include: v structure and representation theory of reductive algebraic monoids v monoid schemes and applications of monoids v monoids related to Lie theory v equivariant embeddings of algebraic groups v constructions and properties of monoids from algebraic combinatorics v endomorphism monoids induced from vector bundles v Hodge-Newton decompositions of reductive monoids A portion of these articles are designed to serve as a self-contained introduction to these topics, while the remaining contributions are research articles containing previously unpublished results, which are sure to become very influential for future work. Among these, for example, the important recent work of Michel Brion and Lex Renner showing that the algebraic semigroups are strongly [pi]-regular. Graduate students as well as researchers working in the fields of algebraic (semi)group theory, algebraic combinatorics, and the theory of algebraic group embeddings will benefit from this unique and broad compilation of some fundamental results in (semi)group theory, algebraic group embeddings, and algebraic combinatorics merged under the umbrella of algebraic monoids. 
504 |a Includes bibliographical references. 
650 0 |a Monoids  |v Congresses. 
650 0 |a Geometry, Algebraic  |v Congresses.  |0 http://id.loc.gov/authorities/subjects/sh2008105180 
650 1 4 |a Mathematics. 
650 2 4 |a Combinatorics. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Algebraic Geometry. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Geometry, Algebraic.  |2 fast  |0 (OCoLC)fst00940902 
650 7 |a Monoids.  |2 fast  |0 (OCoLC)fst01025589 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Can, Mahir,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2014016760  |1 http://viaf.org/viaf/309835846 
711 2 |a Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics (Workshop)  |d (2012 :  |c Toronto, Ont.)  |0 http://id.loc.gov/authorities/names/nb2014016759  |1 http://viaf.org/viaf/309835845 
776 0 8 |i Printed edition:  |z 9781493909377 
830 0 |a Fields Institute communications ;  |v v. 71.  |x 1069-5265 
856 4 0 |u http://link.springer.com/10.1007/978-1-4939-0938-4  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 92ee5c1b-b820-5898-93e6-a6fd1e2fa45b  |s 987acd2e-e124-5bd3-af96-94909f065468 
928 |t Library of Congress classification  |a QA169  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-1-4939-0938-4  |z SpringerLink  |g ebooks  |i 9896022