An introduction to viscosity solutions for fully nonlinear PDE with applications to calculus of variations in L∞ /

Saved in:
Bibliographic Details
Author / Creator:Katzourakis, Nikos, author.
Imprint:Cham : Springer, 2015.
Description:1 online resource (xii, 123 pages) : illustrations (some color).
Language:English
Series:SpringerBriefs in Mathematics, 2191-8198
SpringerBriefs in mathematics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11090159
Hidden Bibliographic Details
ISBN:9783319128290
3319128299
9783319128283
3319128280
Digital file characteristics:text file PDF
Notes:Includes bibliographical references.
Online resource; title from PDF title page (SpringerLink, viewed February 3, 2015).
Summary:The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE.
Other form:Original 3319128280 9783319128283
Standard no.:10.1007/978-3-319-12829-0

MARC

LEADER 00000cam a2200000Ii 4500
001 11090159
005 20170630050112.2
006 m o d
007 cr cnu|||unuuu
008 141203s2015 sz a ob 000 0 eng d
003 ICU
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d TEF  |d GW5XE  |d N$T  |d COO  |d OCLCF  |d IDEBK  |d E7B  |d CDX  |d EBLCP  |d TPH  |d CAUOI  |d UAB  |d U3G 
019 |a 899563591  |a 900317077  |a 908086581 
020 |a 9783319128290  |q electronic bk. 
020 |a 3319128299  |q electronic bk. 
020 |z 9783319128283 
020 |z 3319128280 
024 7 |a 10.1007/978-3-319-12829-0  |2 doi 
035 |a (OCoLC)897377020  |z (OCoLC)899563591  |z (OCoLC)900317077  |z (OCoLC)908086581 
050 4 |a QA377 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
072 7 |a PBKJ  |2 bicssc 
049 |a MAIN 
100 1 |a Katzourakis, Nikos,  |e author.  |0 http://id.loc.gov/authorities/names/no2015040373  |1 http://viaf.org/viaf/315189964 
245 1 3 |a An introduction to viscosity solutions for fully nonlinear PDE with applications to calculus of variations in L∞ /  |c Nikos Katzourakis. 
264 1 |a Cham :  |b Springer,  |c 2015. 
300 |a 1 online resource (xii, 123 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8198 
504 |a Includes bibliographical references. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 3, 2015). 
520 |a The purpose of this book is to give a quick and elementary, yet rigorous, presentation of the rudiments of the so-called theory of Viscosity Solutions which applies to fully nonlinear 1st and 2nd order Partial Differential Equations (PDE). For such equations, particularly for 2nd order ones, solutions generally are non-smooth and standard approaches in order to define a "weak solution" do not apply: classical, strong almost everywhere, weak, measure-valued and distributional solutions either do not exist or may not even be defined. The main reason for the latter failure is that, the standard idea of using "integration-by-parts" in order to pass derivatives to smooth test functions by duality, is not available for non-divergence structure PDE. 
505 0 |a Preface; Acknowledgments; Contents; 1 History, Examples, Motivation and First Definitions; References; 2 Second Definitions and Basic Analytic Properties of the Notions; References; 3 Stability Properties of the Notions and Existence via Approximation; References; 4 Mollification of Viscosity Solutions and Semiconvexity; References; 5 Existence of Solution to the Dirichlet Problem via Perron's Method; References; 6 Comparison Results and Uniqueness of Solution to the Dirichlet Problem; References 
505 8 |a 7 Minimisers of Convex Functionals and Existence of Viscosity Solutions to the Euler-Lagrange PDEReferences; 8 Existence of Viscosity Solutions to the Dirichlet Problem for the infty-Laplacian; References; 9 Miscellaneous Topics and Some Extensions of the Theory; 9.1 Fundamental Solutions of the infty-Laplacian; 9.1.1 The infty-Laplacian and Tug-of-War Differential Games; 9.1.2 Discontinuous Coefficients, Discontinuous Solutions; 9.1.3 Barles-Perthame Relaxed Limits (1-Sided Uniform Convergence) and Generalised 1-Sided Stability; 9.1.4 Boundary Jets and Jets Relative to Non-open Sets 
505 8 |a 9.1.5 Nonlinear Boundary Conditions9.1.6 Comparison Principle for Viscosity Solutions Without Decoupling in the x-variable; References 
650 0 |a Differential equations, Partial.  |0 http://id.loc.gov/authorities/subjects/sh85037912 
650 0 |a Differential equations, Nonlinear.  |0 http://id.loc.gov/authorities/subjects/sh85037906 
650 0 |a Calculus of variations.  |0 http://id.loc.gov/authorities/subjects/sh85018809 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Calculus of Variations and Optimal Control; Optimization. 
650 7 |a Calculus of variations.  |2 fast  |0 (OCoLC)fst00844140 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00893474 
650 7 |a Differential equations, Partial.  |2 fast  |0 (OCoLC)fst00893484 
650 1 2 |a Mathematics. 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |c Original  |z 3319128280  |z 9783319128283 
830 0 |a SpringerBriefs in mathematics.  |0 http://id.loc.gov/authorities/names/no2011133396 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-12829-0  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 5b9a8a78-75a1-586d-9623-5bfea169977b  |s 491c4381-ac85-5708-91be-022f3449453e 
928 |t Library of Congress classification  |a QA377  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-12829-0  |z SpringerLink  |g ebooks  |i 9903462