Elementary symplectic topology and mechanics /

Saved in:
Bibliographic Details
Author / Creator:Cardin, Franco, author.
Imprint:Cham [Switzerland] : Springer, [2015]
Description:1 online resource.
Language:English
Series:Lecture notes of the Unione Matematica Italiana ; 16
Lecture notes of the Unione Matematica Italiana ; 16.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11090316
Hidden Bibliographic Details
ISBN:9783319110264
3319110268
9783319110257
331911025X
Notes:Includes bibliographical references.
Vendor-supplied metadata.
Summary:This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hr̲mander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincar'̌s last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrd̲inger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects.
Other form:Original 331911025X 9783319110257
Standard no.:10.1007/978-3-319-11026-4

MARC

LEADER 00000cam a2200000Ii 4500
001 11090316
005 20170630045700.1
006 m o d
007 cr cnu|||unuuu
008 141204s2015 sz ob 000 0 eng d
003 ICU
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d YDXCP  |d COO  |d OCLCF  |d GW5XE  |d IDEBK  |d EBLCP  |d UAB  |d U3G  |d Z5A 
019 |a 899569031  |a 908088884 
020 |a 9783319110264  |q electronic bk. 
020 |a 3319110268  |q electronic bk. 
020 |z 9783319110257 
020 |z 331911025X 
024 7 |a 10.1007/978-3-319-11026-4  |2 doi 
035 |a (OCoLC)897466467  |z (OCoLC)899569031  |z (OCoLC)908088884 
050 4 |a QA613.659 
072 7 |a MAT  |x 038000  |2 bisacsh 
049 |a MAIN 
100 1 |a Cardin, Franco,  |e author.  |0 http://id.loc.gov/authorities/names/no2015051059  |1 http://viaf.org/viaf/315603768 
245 1 0 |a Elementary symplectic topology and mechanics /  |c Franco Cardin. 
264 1 |a Cham [Switzerland] :  |b Springer,  |c [2015] 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
490 1 |a Lecture notes of the Unione Matematica Italiana ;  |v 16 
504 |a Includes bibliographical references. 
588 0 |a Vendor-supplied metadata. 
505 0 |a Beginning -- Notes on Differential Geometry -- Symplectic Manifolds -- Poisson brackets environment -- Cauchy Problem for H-J equations -- Calculus of Variations and Conjugate Points -- Asymptotic Theory of Oscillating Integrals -- Lusternik-Schnirelman and Morse -- Finite Exact Reductions -- Other instances -- Bibliography. 
520 |a This is a short tract on the essentials of differential and symplectic geometry together with a basic introduction to several applications of this rich framework: analytical mechanics, the calculus of variations, conjugate points & Morse index, and other physical topics. A central feature is the systematic utilization of Lagrangian submanifolds and their Maslov-Hr̲mander generating functions. Following this line of thought, first introduced by Wlodemierz Tulczyjew, geometric solutions of Hamilton-Jacobi equations, Hamiltonian vector fields and canonical transformations are described by suitable Lagrangian submanifolds belonging to distinct well-defined symplectic structures. This unified point of view has been particularly fruitful in symplectic topology, which is the modern Hamiltonian environment for the calculus of variations, yielding sharp sufficient existence conditions. This line of investigation was initiated by Claude Viterbo in 1992; here, some primary consequences of this theory are exposed in Chapter 8: aspects of Poincar'̌s last geometric theorem and the Arnol'd conjecture are introduced. In Chapter 7 elements of the global asymptotic treatment of the highly oscillating integrals for the Schrd̲inger equation are discussed: as is well known, this eventually leads to the theory of Fourier Integral Operators. This short handbook is directed toward graduate students in Mathematics and Physics and to all those who desire a quick introduction to these beautiful subjects. 
650 0 |a Symplectic and contact topology.  |0 http://id.loc.gov/authorities/subjects/sh2002008806 
650 7 |a MATHEMATICS / Topology  |2 bisacsh 
650 7 |a Symplectic and contact topology.  |2 fast  |0 (OCoLC)fst01140988 
650 4 |a Global differential geometry. 
650 4 |a Mathematical optimization. 
650 4 |a Mathematics. 
655 4 |a Electronic books. 
776 0 8 |c Original  |z 331911025X  |z 9783319110257  |w (OCoLC)886475238 
830 0 |a Lecture notes of the Unione Matematica Italiana ;  |v 16. 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-11026-4  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i e64c6ac8-1691-52e5-bc72-54115c58c59b  |s a82b4eda-34b5-5eb8-a3ae-14bda6ed5d0f 
928 |t Library of Congress classification  |a QA613.659  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-11026-4  |z SpringerLink  |g ebooks  |i 9903646