Machine learning and data mining approaches to climate science : proceedings of the 4th International Workshop on Climate Informatics /

Saved in:
Bibliographic Details
Meeting name:International Workshop on Climate Informatics (4th : 2014 : Boulder, Colo.)
Imprint:Cham ; New York : Springer, [2015]
©2015
Description:1 online resource : illustrations
Language:English
Series:Online access with purchase: Springer (t)
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11094968
Hidden Bibliographic Details
Other authors / contributors:Lakshmanan, Valliappa, editor.
Gilleland, Eric, editor.
McGovern, Amy, editor.
Tingley, Martin P., editor.
ISBN:9783319172200
3319172204
3319172190
9783319172194
9783319172194
Notes:Includes bibliographical references and index.
Vendor-supplied metadata.
Summary:This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014.
Other form:Printed edition: 9783319172194
Standard no.:10.1007/978-3-319-17220-0

MARC

LEADER 00000cam a2200000Ii 4500
001 11094968
005 20170630045952.6
006 m o d
007 cr cnu|||unuuu
008 150702t20152015sz a ob 101 0 eng d
003 ICU
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d GW5XE  |d OCLCO  |d IDEBK  |d YDXCP  |d UPM  |d OCLCF  |d OCLCO  |d COO  |d EBLCP  |d CDX  |d OCLCQ  |d OCLCO  |d OHI  |d OCLCO  |d LVT 
019 |a 972001498 
020 |a 9783319172200  |q (electronic bk.) 
020 |a 3319172204  |q (electronic bk.) 
020 |a 3319172190  |q (print) 
020 |a 9783319172194  |q (print) 
020 |z 9783319172194 
024 7 |a 10.1007/978-3-319-17220-0  |2 doi 
035 |a (OCoLC)912875079  |z (OCoLC)972001498 
050 4 |a QC981 
072 7 |a SCI  |x 030000  |2 bisacsh 
072 7 |a SCI  |x 031000  |2 bisacsh 
072 7 |a RB  |2 bicssc 
049 |a MAIN 
111 2 |a International Workshop on Climate Informatics  |n (4th :  |d 2014 :  |c Boulder, Colo.) 
245 1 0 |a Machine learning and data mining approaches to climate science :  |b proceedings of the 4th International Workshop on Climate Informatics /  |c Valliappa Lakshmanan, Eric Gilleland, Amy McGovern, Martin Tingley, editors. 
264 1 |a Cham ;  |a New York :  |b Springer,  |c [2015] 
264 4 |c ©2015 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent  |0 http://id.loc.gov/vocabulary/contentTypes/txt 
337 |a computer  |b c  |2 rdamedia  |0 http://id.loc.gov/vocabulary/mediaTypes/c 
338 |a online resource  |b cr  |2 rdacarrier  |0 http://id.loc.gov/vocabulary/carriers/cr 
504 |a Includes bibliographical references and index. 
588 0 |a Vendor-supplied metadata. 
505 0 |a From the Contents: Machine learning, statistics, or data mining, applied to climate science -- Management and processing of large climate datasets -- Long and short-term climate prediction -- Ensemble characterization of climate model projections -- Past (paleo) climate reconstruction. 
520 |a This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014. 
650 0 |a Climatic changes  |x Data processing  |v Congresses. 
650 0 |a Climatology  |x Data processing  |v Congresses. 
650 0 |a Environmental sciences  |x Data processing  |v Congresses.  |0 http://id.loc.gov/authorities/subjects/sh2009103460 
650 7 |a SCIENCE  |x Earth Sciences  |x Geography.  |2 bisacsh 
650 7 |a SCIENCE  |x Earth Sciences  |x Geology.  |2 bisacsh 
650 7 |a Climatic changes  |x Data processing.  |2 fast  |0 (OCoLC)fst00864232 
650 7 |a Climatology  |x Data processing.  |2 fast  |0 (OCoLC)fst00864286 
650 7 |a Environmental sciences  |x Data processing.  |2 fast  |0 (OCoLC)fst00913482 
655 4 |a Electronic books. 
655 7 |a Conference papers and proceedings.  |2 fast  |0 (OCoLC)fst01423772 
700 1 |a Lakshmanan, Valliappa,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2019022737  |1 http://viaf.org/viaf/305802797 
700 1 |a Gilleland, Eric,  |e editor. 
700 1 |a McGovern, Amy,  |e editor. 
700 1 |a Tingley, Martin P.,  |e editor.  |0 http://id.loc.gov/authorities/names/no2013109881  |1 http://viaf.org/viaf/307448378 
776 0 8 |i Printed edition:  |z 9783319172194 
830 0 |a Online access with purchase: Springer (t) 
856 4 0 |u http://link.springer.com/10.1007/978-3-319-17220-0  |y SpringerLink 
903 |a HeVa 
929 |a eresource 
999 f f |i 587a86d7-4b40-5ad9-88b5-8c0648e0021d  |s 8c953d1b-8661-5351-87a9-f93c47f5fe02 
928 |t Library of Congress classification  |a QC981  |l Online  |c UC-FullText  |u http://link.springer.com/10.1007/978-3-319-17220-0  |z SpringerLink  |g ebooks  |i 9909224