The convergence problem for dissipative autonomous systems : classical methods and recent advances /

Saved in:
Bibliographic Details
Author / Creator:Haraux, Alain, 1949- author.
Imprint:Cham : Springer, 2015.
Description:1 online resource (xii, 142 pages) : color illustrations.
Language:English
Series:SpringerBriefs in mathematics, 2191-8198
SpringerBriefs in mathematics.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11096101
Hidden Bibliographic Details
Other authors / contributors:Jendoubi, Mohamed Ali, author.
ISBN:9783319234076
3319234072
3319234064
9783319234069
9783319234069
Digital file characteristics:text file PDF
Notes:Includes bibliographical references and index.
Online resource; title from PDF title page (SpringerLink, viewed September 9, 2015).
Summary:The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces, which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.
Other form:Printed edition: 9783319234069
Standard no.:10.1007/978-3-319-23407-6
Description
Summary:

The book investigates classical and more recent methods of study for the asymptotic behavior of dissipative continuous dynamical systems with applications to ordinary and partial differential equations, the main question being convergence (or not) of the solutions to an equilibrium. After reviewing the basic concepts of topological dynamics and the definition of gradient-like systems on a metric space, the authors present a comprehensive exposition of stability theory relying on the so-called linearization method. For the convergence problem itself, when the set of equilibria is infinite, the only general results that do not require very special features of the non-linearities are presently consequences of a gradient inequality discovered by S. Lojasiewicz. The application of this inequality jointly with the so-called Liapunov-Schmidt reduction requires a rigorous exposition of Semi-Fredholm operator theory and the theory of real analytic maps on infinite dimensional Banach spaces,which cannot be found anywhere in a readily applicable form. The applications covered in this short text are the simplest, but more complicated cases are mentioned in the final chapter, together with references to the corresponding specialized papers.

Physical Description:1 online resource (xii, 142 pages) : color illustrations.
Bibliography:Includes bibliographical references and index.
ISBN:9783319234076
3319234072
3319234064
9783319234069
ISSN:2191-8198