Lectures on quantum field theory /

Saved in:
Bibliographic Details
Author / Creator:Das, Ashok, 1953-
Imprint:Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008.
Description:1 online resource (xiii, 775 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11101511
Hidden Bibliographic Details
Varying Form of Title:Quantum field theory
Other authors / contributors:World Scientific (Firm)
ISBN:9789812832870
9812832874
9789812832863
9812832866
9789812832856
9812832858
Notes:Includes bibliographical references and index.
Summary:This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactions are also developed systematically. Regularization and (BPHZ) renormalization of field theories as well as gauge theories are discussed in detail, leading to a derivation of the renormalization group equation. In addition, two chapters - one on the Dirac quantization of constrained systems and another on discrete symmetries - are included for completeness, although these are not covered in the two-semester course.
Other form:Print version: Das, Ashok, 1953- Lectures on quantum field theory. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008

MARC

LEADER 00000cam a2200000Ma 4500
001 11101511
005 20210426224247.9
006 m o d
007 cr buu|||uu|||
008 090522s2008 si a ob 001 0 eng d
010 |a  2009275572 
019 |a 960207128  |a 961653354  |a 962647392  |a 966487286  |a 988529815  |a 991999162  |a 1037794005  |a 1038668090  |a 1045486873  |a 1055390479  |a 1066444086  |a 1081288974  |a 1086439992  |a 1175698045  |a 1176486069  |a 1228527665 
020 |a 9789812832870  |q (electronic bk.) 
020 |a 9812832874  |q (electronic bk.) 
020 |z 9789812832863  |q (pbk.) 
020 |z 9812832866  |q (pbk.) 
020 |z 9789812832856 
020 |z 9812832858 
035 |a (OCoLC)747539687  |z (OCoLC)960207128  |z (OCoLC)961653354  |z (OCoLC)962647392  |z (OCoLC)966487286  |z (OCoLC)988529815  |z (OCoLC)991999162  |z (OCoLC)1037794005  |z (OCoLC)1038668090  |z (OCoLC)1045486873  |z (OCoLC)1055390479  |z (OCoLC)1066444086  |z (OCoLC)1081288974  |z (OCoLC)1086439992  |z (OCoLC)1175698045  |z (OCoLC)1176486069  |z (OCoLC)1228527665 
035 9 |a (OCLCCM-CC)747539687 
040 |a World Scientific Publishing  |b eng  |e pn  |c STF  |d N$T  |d E7B  |d IDEBK  |d DEBSZ  |d YDXCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d LOA  |d AGLDB  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d U3W  |d WRM  |d VTS  |d NRAMU  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d STF  |d DKC  |d AU@  |d OCLCQ  |d M8D  |d UKAHL  |d OCL  |d OCLCQ  |d LEAUB  |d UKCRE 
049 |a MAIN 
050 4 |a QC174.45 
072 7 |a SCI  |x 067000  |2 bisacsh 
100 1 |a Das, Ashok,  |d 1953-  |0 http://id.loc.gov/authorities/names/n85218480 
245 1 0 |a Lectures on quantum field theory /  |c Ashok Das. 
246 3 0 |a Quantum field theory 
260 |a Singapore ;  |a Hackensack, N.J. :  |b World Scientific Pub. Co.,  |c ©2008. 
300 |a 1 online resource (xiii, 775 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a 1. Relativistic equations. 1.1. Introducion. 1.2. Notations. 1.3. Klein-Gordon equation. 1.4. Dirac equation. 1.5. References -- 2. Solutions of the Dirac equation. 2.1. Plane wave equation. 2.2. Normalization of the wave function. 2.3. Spin of the Dirac particle. 2.4. Continuity equation. 2.5. Dirac's hole theory. 2.6. Properties of the Dirac matrices. 2.7. References -- 3. Properties of the Dirac equation. 3.1. Lorentz transformations. 3.2. Covariance of the Dirac equation. 3.3. Transformation of bilinears. 3.4. Projection operators, completeness relation. 3.5. Helicity. 3.6. Massless Dirac particle. 3.7. Chirality. 3.8. Non-relativistic limit of the Dirac equation. 3.9. Electron in an external magnetic field. 3.10. Foldy-Wouthuysen transformation. 3.11. Zitterbewegung. 3.12. References -- 4. Representations of Lorentz and Poincaré groups. 4.1. Symmetry algebras. 4.2. Representations of the Lorentz group. 4.3. Unitary representations of the Poincaré group. 4.4. References -- 5. Free Klein-Gordon field theory. 5.1. Introduction. 5.2. Lagrangian density. 5.3. Quantization. 5.4. Field decomposition. 5.5. Creation and annihilation operators. 5.6. Energy eigenstates. 5.7. Physical meaning of energy eigenstates. 5.8. Green's functions. 5.9. Covariant commutation relations. 5.10. References -- 6. Self-interacting scalar field theory. 6.1. Nöther's theorem. 6.2. Self-interacting [symbol] theory. 6.3. Interaction picture and time evolution operator. 6.4. S-matrix. 6.5. Normal ordered product and Wick's theorem. 6.6. Time ordered products and Wick's theorem. 6.7. Spectral representation and dispersion relation. 6.8. References -- 7. Complex scalar field theory. 7.1. Quantization. 7.2. Field decomposition. 7.3. Charge operator. 7.4. Green's functions. 7.5. Spontaneous symmetry breaking and the Goldstone theorem. 7.6. Electromagnetic coupling. 7.7. References -- 8. Dirac field theory. 8.1. Pauli exclusion principle. 8.2. Quantization of the Dirac field. 8.3. Field decomposition. 8.4. Charge operator. 8.5. Green's functions. 8.6. Covariant anti-commutation relations. 8.7. Normal ordered and time ordered products. 8.8. Massless Dirac fields. 8.9. Yukawa interaction. 8.10. Feynman diagrams. 8.11. References -- 9. Maxwell field theory. 9.1. Maxwell's equations. 9.2. Canonical quantization. 9.3. Field decomposition. 9.4. Photon propagator. 9.5. Quantum electrodynamics. 9.6. Physical processes. 9.7. Ward-Takahashi identity in QED. 9.8. Covariant quantization of the Maxwell theory. 9.9. References -- 10. Dirac method for constrained systems. 10.1. Constrained systems. 10.2. Dirac method and Dirac bracket. 10.3. Particle moving on a sphere. 10.4. Relativistic particle. 10.5. Dirac field theory. 10.6. Maxwell field theory. 10.7. References -- 11. Discrete symmetries. 11.1. Parity. 11.2. Charge conjugation. 11.3. Time reversal. 11.4. CPT theorem. 11.5. References -- 12. Yang-Mills theory. 12.1. Non-Abelian gauge theories. 12.2. Canonical quantization of Yang-Mills theory. 12.3. Path integral quantization of gauge theories. 12.4. Path integral quantization of tensor fields. 12.5. References -- 13. BRST invariance and its consequences. 13.1. BRST symmetry. 13.2. Covariant quantization of Yang-Mills theory. 13.3. Unitarity. 13.4. Slavnov-Taylor identity. 13.5. Feynman rules. 13.6. Ghost free gauges. 13.7. References -- 14. Higgs phenomenon and the standard model. 14.1. Stückelberg formalism. 14.2. Higgs phenomenon. 14.3. The standard model. 14.4. References -- 15. Regularization of Feynman diagrams. 15.1. Introduction. 15.2. Loop expansion. 15.3. Cut-off regularization. 15.4. Pauli-Villars regularization. 15.5. Dimensional regularization. 15.6. References -- 16. Renormalization theory. 16.1. Superficial degree of divergence. 16.2. A brief history of renormalization. 16.3. Schwinger-Dyson equation. 16.4. BPHZ renormalization. 16.5. Renormalization of gauge theories. 16.6. Anomalous Ward identity. 16.7. References -- 17. Renormalization group and equation. 17.1. Gell-Mann-Low equation. 17.2. Renormalization group. 17.3. Renormalization group equation. 17.4. Solving the renormalization group equation. 17.5. Callan-Symanzik equation. 17.6. References. 
520 |a This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactions are also developed systematically. Regularization and (BPHZ) renormalization of field theories as well as gauge theories are discussed in detail, leading to a derivation of the renormalization group equation. In addition, two chapters - one on the Dirac quantization of constrained systems and another on discrete symmetries - are included for completeness, although these are not covered in the two-semester course. 
650 0 |a Quantum field theory  |v Textbooks. 
650 7 |a SCIENCE  |x Waves & Wave Mechanics.  |2 bisacsh 
650 7 |a Quantum field theory.  |2 fast  |0 (OCoLC)fst01085105 
655 4 |a Electronic books. 
655 7 |a Textbooks.  |2 fast  |0 (OCoLC)fst01423863 
655 0 |a Electronic books. 
710 2 |a World Scientific (Firm)  |0 http://id.loc.gov/authorities/names/no2001005546 
776 0 8 |i Print version:  |a Das, Ashok, 1953-  |t Lectures on quantum field theory.  |d Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008  |w (DLC) 2009275572 
903 |a HeVa 
929 |a oclccm 
999 f f |i 2a725181-baf7-5db0-8031-d67884ae65e2  |s 7e8614a2-883b-560f-b592-f5bd96b4084f 
928 |t Library of Congress classification  |a QC174.45  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=521228  |z eBooks on EBSCOhost  |g ebooks  |i 12354430