Small Unmanned Aircraft : Theory and Practice /

Saved in:
Bibliographic Details
Author / Creator:Beard, Randal W., author.
Imprint:Princeton : Princeton University Press, [2012]
Description:1 online resource (xiii, 300 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11122513
Hidden Bibliographic Details
Other authors / contributors:McLain, Timothy W., 1963- author.
ISBN:9781400840601
1400840600
9781680159028
168015902X
0691149216
9780691149219
1283379678
9781283379670
Notes:Includes bibliographical references and index.
Print version record.
Summary:Autonomous unmanned air vehicles (UAVs) are critical to current and future military, civil, and commercial operations. Despite their importance, no previous textbook has accessibly introduced UAVs to students in the engineering, computer, and science disciplines--until now. Small Unmanned Aircraft provides a concise but comprehensive description of the key concepts and technologies underlying the dynamics, control, and guidance of fixed-wing unmanned aircraft, and enables all students with an introductory-level background in controls or robotics to enter this exciting and important area. The a.
Other form:Print version: Beard, Randal W. Small unmanned aircraft. Princeton, N.J. : Princeton University Press, ©2012 9780691149219
Standard no.:9786613379672
Table of Contents:
  • Preface
  • Chapter 1. Introduction
  • 1.1. System Architecture
  • 1.2. Design Models
  • 1.3. Design Project
  • Chapter 2. Coordinate Frames
  • 2.1. RotationMatrices
  • 2.2. MAV Coordinate Frames
  • 2.3. Airspeed,Wind Speed, and Ground Speed
  • 2.4. TheWind Triangle
  • 2.5. Differentiation of a Vector
  • 2.6. Chapter Summary
  • 2.7. Design Project
  • Chapter 3. Kinematics and Dynamics
  • 3.1. State Variables
  • 3.2. Kinematics
  • 3.3. Rigid-body Dynamics
  • 3.4. Chapter Summary
  • 3.5. Design Project
  • Chapter 4. Forces and Moments
  • 4.1. Gravitational Forces
  • 4.2. Aerodynamic Forces andMoments
  • 4.3. Propulsion Forces andMoments
  • 4.4. Atmospheric Disturbances
  • 4.5. Chapter Summary
  • 4.6. Design Project
  • Chapter 5. Linear Design Models
  • 5.1. Summary of Nonlinear Equations of Motion
  • 5.2. Coordinated Turn
  • 5.3. Trim Conditions
  • 5.4. Transfer Function Models
  • 5.5. Linear State-space Models
  • 5.6. Reduced-order Modes
  • 5.7. Chapter Summary
  • 5.8. Design Project
  • Chapter 6. Autopilot Design Using Successive Loop Closure
  • 6.1. Successive Loop Closure
  • 6.2. Saturation Constraints and Performance
  • 6.3. Lateral-directional Autopilot
  • 6.4. Longitudinal Autopilot
  • 6.5. Digital Implementation of PID Loops
  • 6.6. Chapter Summary
  • 6.7. Design Project
  • Chapter 7. Sensors for MAVs
  • 7.1. Accelerometers
  • 7.2. Rate Gyros
  • 7.3. Pressure Sensors
  • 7.4. Digital Compasses
  • 7.5. Global Positioning System
  • 7.6. Chapter Summary
  • 7.7. Design Project
  • Chapter 8. State Estimation
  • 8.1. Benchmark Maneuver
  • 8.2. Low-pass Filters
  • 8.3. State Estimation by Inverting the Sensor Model
  • 8.4. Dynamic-observer Theory
  • 8.5. Derivation of the Continuous-discrete Kalman Filter
  • 8.6. Attitude Estimation
  • 8.7. GPS Smoothing
  • 8.8. Chapter Summary
  • 8.9. Design Project
  • Chapter 9. Design Models for Guidance
  • 9.1. AutopilotModel
  • 9.2. Kinematic Model of Controlled Flight
  • 9.3. Kinematic Guidance Models
  • 9.4. Dynamic Guidance Model
  • 9.5. Chapter Summary
  • 9.6. Design Project
  • Chapter 10. Straight-line and Orbit Following
  • 10.1. Straight-line Path Following
  • 10.2. Orbit Following
  • 10.3. Chapter Summary
  • 10.4. Design Project
  • Chapter 11. Path Manager
  • 11.1. Transitions BetweenWaypoints
  • 11.2. Dubins Paths
  • 11.3. Chapter Summary
  • 11.4. Design Project
  • Chapter 12. Path Planning
  • 12.1. Point-to-Point Algorithms
  • 12.2. Coverage Algorithms
  • 12.3. Chapter Summary
  • 12.4. Design Project
  • Chapter 13. Vision-guided Navigation
  • 13.1. Gimbal and Camera Frames and Projective Geometry
  • 13.2. Gimbal Pointing
  • 13.3. Geolocation
  • 13.4. Estimating Target Motion in the Image Plane
  • 13.5. Time to Collision
  • 13.6. Precision Landing
  • 13.7. Chapter Summary
  • 13.8. Design Project
  • Appendix A. Nomenclature and Notation
  • Appendix B. Quaternions
  • B.1. Quaternion Rotations
  • B.2. Aircraft Kinematic and Dynamic Equations
  • B.3. Conversion Between Euler Angles and Quaternions
  • Appendix C. Animations in Simulink
  • C.1. Handle Graphics inMatlab
  • C.2. Animation Example: Inverted Pendulum
  • C.3. Animation Example: Spacecraft Using Lines
  • C.4. Animation Example: Spacecraft Using Vertices and Faces
  • Appendix D. Modeling in Simulink Using S-Functions
  • D.1. Example: Second-order Differential Equation
  • Appendix E. Airframe Parameters
  • E.1. Zagi Flying Wing
  • E.2. Aerosonde UAV
  • Appendix F. Trim and Linearization in Simulink
  • F.1. Using the Simulink trim Command
  • F.2. Numerical Computation of Trim
  • F.3. Using the Simulink linmod Command to Generate a State-space Model
  • F.4. Numerical Computation of State-space Model
  • Appendix G. Essentials from Probability Theory
  • Appendix H. Sensor Parameters
  • H.1. Rate Gyros
  • H.2. Accelerometers
  • H.3. Pressure Sensors
  • H.4. Digital Compass/Magnetometer
  • H.5. GPS
  • Bibliography
  • Index