Chaos bifurcations and fractals around us : a brief introduction /

Saved in:
Bibliographic Details
Author / Creator:Szemplińska-Stupnicka, Wanda.
Imprint:River Edge, NJ : World Scientific, ©2003.
Description:1 online resource (v, 107 pages) : illustrations (some color)
Language:English
Series:World Scientific series on nonlinear science. Series A, Monographs and treatises ; v. 47
World Scientific series on nonlinear science. Series A, Monographs and treatises ; v. 47.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11137023
Hidden Bibliographic Details
ISBN:9812564373
9789812564375
9789812386892
9812386890
9812386890
Notes:Includes bibliographical references (pages 101-103) and index.
Print version record.
Summary:During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study. Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study.
Other form:Print version: Szemplińska-Stupnicka, Wanda. Chaos bifurcations and fractals around us. River Edge, NJ : World Scientific, ©2003 9812386890

MARC

LEADER 00000cam a2200000Ia 4500
001 11137023
005 20210426223028.8
006 m o d
007 cr cnu---unuuu
008 050624s2003 njua ob 001 0 eng d
010 |a  2005277667 
019 |a 123412957  |a 149500396  |a 1055360485  |a 1064123691  |a 1081280656  |a 1119035331  |a 1228596101 
020 |a 9812564373  |q (electronic bk.) 
020 |a 9789812564375  |q (electronic bk.) 
020 |a 9789812386892 
020 |a 9812386890 
020 |z 9812386890 
035 |a (OCoLC)60716125  |z (OCoLC)123412957  |z (OCoLC)149500396  |z (OCoLC)1055360485  |z (OCoLC)1064123691  |z (OCoLC)1081280656  |z (OCoLC)1119035331  |z (OCoLC)1228596101 
035 9 |a (OCLCCM-CC)60716125 
040 |a N$T  |b eng  |e pn  |c N$T  |d OCLCQ  |d YDXCP  |d OCLCQ  |d EBLCP  |d BTCTA  |d IDEBK  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DEBSZ  |d OCLCA  |d I9W  |d OCLCQ  |d NLGGC  |d OCLCQ  |d OCLCF  |d OCLCQ  |d AGLDB  |d CCO  |d MOR  |d PIFBR  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d OCLCQ  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d JBG  |d TKN  |d COCUF  |d OCLCQ  |d G3B  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ 
049 |a MAIN 
050 4 |a QA380  |b .S946 2003eb 
072 7 |a MAT  |x 007000  |2 bisacsh 
100 1 |a Szemplińska-Stupnicka, Wanda.  |0 http://id.loc.gov/authorities/names/n82148235 
245 1 0 |a Chaos bifurcations and fractals around us :  |b a brief introduction /  |c Wanda Szemplińska-Stupnicka. 
260 |a River Edge, NJ :  |b World Scientific,  |c ©2003. 
300 |a 1 online resource (v, 107 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a World Scientific series on nonlinear science. Series A, Monographs and treatises ;  |v v. 47 
504 |a Includes bibliographical references (pages 101-103) and index. 
588 0 |a Print version record. 
505 0 |a 1. Introduction -- 2. Ueda's "strange attractors" -- 3. Pendulum. 3.1. Equation of motion, linear and weakly nonlinear oscillations. 3.2. Method of Poincaré map. 3.3. Stable and unstable periodic solutions. 3.4. Bifurcation diagrams. 3.5. Basins of attraction of coexisting attractors. 3.6. Global homoclinic bifurcation. 3.7. Persistent chaotic motion -- chaotic attractor. 3.8. Cantor set -- an example of a fractal geometric object -- 4. Vibrating system with two minima of potential energy. 4.1. Physical and mathematical model of the system. 4.2. The single potential well motion. 4.3. Melnikov criterion. 4.4. Fractal boundaries of basins of attraction and transient chaos in the region of principal resonance. 4.5. Oscillating chaos and unpredictability of the final state after destruction of the resonant attractor. 4.6. Boundary crisis of the oscillating chaotic attractor. 4.7. Persistent cross-well chaos. 4.8. Lyapunov exponents. 4.9. Intermittent transition to chaos. 4.10. Large orbit and the boundary crisis of the cross-well chaotic attractor. 4.11. Various types of attractors of the two-well potential system -- 5. Closing remarks. 
520 |a During the last twenty years, a large number of books on nonlinear chaotic dynamics in deterministic dynamical systems have appeared. These academic tomes are intended for graduate students and require a deep knowledge of comprehensive, advanced mathematics. There is a need for a book that is accessible to general readers, a book that makes it possible to get a good deal of knowledge about complex chaotic phenomena in nonlinear oscillators without deep mathematical study. Chaos, Bifurcations and Fractals Around Us: A Brief Introduction fills that gap. It is a very short monograph that, owing to geometric interpretation complete with computer color graphics, makes it easy to understand even very complex advanced concepts of chaotic dynamics. This invaluable publication is also addressed to lecturers in engineering departments who want to include selected nonlinear problems in full time courses on general mechanics, vibrations or physics so as to encourage their students to conduct further study. 
650 0 |a Bifurcation theory.  |0 http://id.loc.gov/authorities/subjects/sh85013940 
650 0 |a Chaotic behavior in systems.  |0 http://id.loc.gov/authorities/subjects/sh85022562 
650 0 |a Differential equations, Nonlinear.  |0 http://id.loc.gov/authorities/subjects/sh85037906 
650 7 |a MATHEMATICS  |x Differential Equations  |x General.  |2 bisacsh 
650 7 |a Bifurcation theory.  |2 fast  |0 (OCoLC)fst00831564 
650 7 |a Chaotic behavior in systems.  |2 fast  |0 (OCoLC)fst00852171 
650 7 |a Differential equations, Nonlinear.  |2 fast  |0 (OCoLC)fst00893474 
655 0 |a Electronic book. 
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Szemplińska-Stupnicka, Wanda.  |t Chaos bifurcations and fractals around us.  |d River Edge, NJ : World Scientific, ©2003  |z 9812386890  |w (OCoLC)54491813 
830 0 |a World Scientific series on nonlinear science.  |n Series A,  |p Monographs and treatises ;  |v v. 47.  |0 http://id.loc.gov/authorities/names/no94008495 
903 |a HeVa 
929 |a oclccm 
999 f f |i 33c7f948-59cb-5bb8-ae66-ba92e1014cb3  |s a6d3a93d-ea5a-5f5d-9877-4703e5be42f2 
928 |t Library of Congress classification  |a QA380 .S946 2003eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=134077  |z eBooks on EBSCOhost  |g ebooks  |i 12228996