Applied latent class analysis /

Saved in:
Bibliographic Details
Imprint:Cambridge ; New York : Cambridge University Press, 2002.
Description:1 online resource (xxii, 454 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11144656
Hidden Bibliographic Details
Other authors / contributors:Hagenaars, Jacques A.
McCutcheon, Allan L., 1950-2016.
ISBN:0511065949
9780511065941
0511068077
9780511068072
0511059639
9780511059636
9780511499531
0511499531
1280417269
9781280417269
0521594510
9780521594516
1107127556
9781107127555
9786610417261
6610417261
1139145630
9781139145633
0511180675
9780511180675
0511326408
9780511326400
0521594510
9780521594516
9780521104050
052110405X
Digital file characteristics:data file
Notes:Includes bibliographical references and indexes.
English.
Print version record.
Summary:Applied Latent Class Analysis introduces several recent innovations in latent class analysis to a wider audience of researchers. Many of the world's leading innovators in the field of latent class analysis have contributed essays to this volume, each presenting a key innovation to the basic LCM.
Other form:Print version: Applied latent class analysis. Cambridge ; New York : Cambridge University Press, 2002
Standard no.:9780521594516
Table of Contents:
  • Preface
  • Part I. Introduction
  • 1. Latent class analysis
  • 2. Basic concepts and procedures in singe- and multiple-group latent class analysis
  • Part II. Classification and Measurement
  • 3. Latent class cluster analysis
  • 4. Some examples of latent budget analysis and its extensions
  • 5. Ordering the classes
  • 6. Comparison and choice
  • 7. Three-parameter linear logistic latent class analysis
  • Part III.
  • 8. Use of categorical and continuous covariates in latent class analysis
  • 9. Directed loglinear modelling with latent variables
  • 10. Latent class models for longitudinal data
  • 11. Latent markov chains
  • Part IV. Unobserved heterogeneity and non-response
  • 12. A latent class approach to measuring the fit of a statistical model
  • 13. Mixture regression models
  • 14. A general latent class approach to unobserved heterogeneity in the analysis of event history data
  • 15. Latent class models for contingency tables with missing data
  • Appendices
  • Index