Digital modulation techniques /

Saved in:
Bibliographic Details
Author / Creator:Xiong, Fuqin, 1946-
Edition:2nd ed.
Imprint:Boston, MA : Artech House, ©2006.
Description:1 online resource (xxi, 1017 pages) : illustrations.
Language:English
Series:Artech House telecommunications library
Artech House telecommunications library.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11152310
Hidden Bibliographic Details
ISBN:1580538630
9781580538633
9781580538640
1580538649
Digital file characteristics:data file
Notes:Includes bibliographical references and index.
Restrictions unspecified
Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2011.
Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212
digitized 2011 HathiTrust Digital Library committed to preserve
Summary:"Packed with nearly 400 illustrations and over 2,500 equations, the book offers full details for every digital modulation technique, including operation principles, bit error probability, spectral characteristics, modulator, demodulator and synchronizer designs, and performance in fading channels. Almost all modulation schemes and their performance evaluation expressions are supported by extensively referenced derivations or proofs, giving professionals the analytical background needed to improve of modify schemes for specific applications."--Jacket.
Other form:Print version: Xiong, Fuqin, 1946- Digital modulation techniques. 2nd ed. Boston, MA : Artech House, ©2006 1580538630 9781580538633
Online version: Xiong, Fuqin, 1946- Digital modulation techniques. 2nd ed. Boston, MA : Artech House, ©2006
Table of Contents:
  • Preface
  • Chapter 1. Introduction
  • 1.1. Digital Communication Systems
  • 1.2. Communication Channels
  • 1.2.1. Additive White Gaussian Noise Channel
  • 1.2.2. Bandlimited Channel
  • 1.2.3. Fading Channel
  • 1.3. Basic Modulation Methods
  • 1.4. Criteria of Choosing Modulation Schemes
  • 1.4.1. Power Efficiency
  • 1.4.2. Bandwidth Efficiency
  • 1.4.3. System Complexity
  • 1.5. Overview of Digital Modulation Schemes and Comparison
  • References
  • Selected Bibliography
  • Chapter 2. Baseband Modulation (Line Codes)
  • 2.1. Differential Coding
  • 2.2. Description of Line Codes
  • 2.2.1. Nonreturn-to-Zero Codes
  • 2.2.2. Return-to-Zero Codes
  • 2.2.3. Pseudoternary Codes (Including AMI)
  • 2.2.4. Biphase Codes (Including Manchester)
  • 2.2.5. Delay Modulation (Miller Code)
  • 2.3. Power Spectral Density of Line Codes
  • 2.3.1. PSD of Nonreturn-to-Zero Codes
  • 2.3.2. PSD of Return-to-Zero Codes
  • 2.3.3. PSD of Pseudoternary Codes
  • 2.3.4. PSD of Biphase Codes
  • 2.3.5. PSD of Delay Modulation
  • 2.4. Bit Error Rate of Line Codes
  • 2.4.1. BER of Binary Codes
  • 2.4.2. BER of Pseudoternary Codes
  • 2.4.3. BER of Biphase Codes
  • 2.4.4. BER of Delay Modulation
  • 2.5. Substitution Line Codes
  • 2.5.1. Binary N-Zero Substitution Codes
  • 2.5.2. High Density Bipolar n Codes
  • 2.6. Block Line Codes
  • 2.6.1. Coded Mark Inversion Codes
  • 2.6.2. Differential Mode Inversion Codes
  • 2.6.3. mBnB Codes
  • 2.6.4. mB1C Codes
  • 2.6.5. DmB1M Codes
  • 2.6.6. PFmB(m+1)B Codes
  • 2.6.7. kBnT Codes
  • 2.7. Pulse Time Modulation
  • 2.7.1. Formats of Pulse Time Modulation
  • 2.7.2. Spectra of Pulse Time Modulation
  • 2.7.3. Performance of Pulse Time Modulation
  • 2.8. Summary
  • References
  • Selected Bibliography
  • Chapter 3. Frequency Shift Keying
  • 3.1. Binary FSK
  • 3.1.1. Binary FSK Signal and Modulator
  • 3.1.2. Power Spectral Density
  • 3.2. Coherent Demodulation and Error Performance
  • 3.3. Noncoherent Demodulation and Error Performance
  • 3.4. M-ary FSK
  • 3.4.1. MFSK Signal and Power Spectral Density
  • 3.4.2. Modulator, Demodulator, and Error Performance
  • 3.5. Demodulation Using Discriminator
  • 3.6. Synchronization
  • 3.7. Summary
  • References
  • Selected Bibliography
  • Chapter 4. Phase Shift Keying
  • 4.1. Binary PSK
  • 4.2. Differential BPSK
  • 4.3. M-ary PSK
  • 4.4. PSD of MPSK
  • 4.5. Differential MPSK
  • 4.6. Quadrature PSK
  • 4.7. Differential QPSK
  • 4.8. Offset QPSK
  • 4.9. [pi]/4-QPSK
  • 4.10. Synchronization
  • 4.10.1. Carrier Recovery
  • 4.10.2. Clock Recovery
  • 4.10.3. Effects of Phase and Timing Error
  • 4.11. Summary
  • Appendix 4A. Derivation of p([phi] / H[subscript i])
  • References
  • Selected Bibliography
  • Chapter 5. Minimum Shift Keying and MSK-Type Modulations
  • 5.1. Description of MSK
  • 5.1.1. MSK Viewed as a Sinusoidal Weighted OQPSK
  • 5.1.2. MSK Viewed as a Special Case of CPFSK
  • 5.2. Power Spectrum and Bandwidth
  • 5.2.1. Power Spectral Density of MSK
  • 5.2.2. Bandwidth of MSK and Comparison with PSK
  • 5.3. Modulator
  • 5.4. Demodulator
  • 5.5. Synchronization
  • 5.6. Error Probability
  • 5.7. Serial MSK
  • 5.7.1. SMSK Description
  • 5.7.2. SMSK Modulator
  • 5.7.3. SMSK Demodulator
  • 5.7.4. Conversion and Matched Filter Implementation
  • 5.7.5. Synchronization of SMSK
  • 5.8. MSK-Type Modulation Schemes
  • 5.9. Sinusoidal Frequency Shift Keying
  • 5.10. Simon's Class of Symbol-Shaping Pulses
  • 5.11. Rabzel and Pasupathy's Symbol-Shaping Pulses
  • 5.12. Bazin's Class of Symbol-Shaping Pulses
  • 5.13. MSK-Type Signal's Spectral Main Lobe
  • 5.14. Summary
  • References
  • Selected Bibliography
  • Chapter 6. Continuous Phase Modulation
  • 6.1. Description of CPM
  • 6.1.1. Various Modulation Pulse Shapes
  • 6.1.2. Phase and State of the CPM Signal
  • 6.1.3. Phase Tree and Trellis and State Trellis
  • 6.2. Power Spectral Density
  • 6.2.1. Steps for Calculating PSDs for General CPM Signals
  • 6.2.2. Effects of Pulse Shape, Modulation Index, and A Priori Distribution
  • 6.2.3. PSD of CPFSK
  • 6.3. MLSD for CPM and Error Probability
  • 6.3.1. Error Probability and Euclidean Distance
  • 6.3.2. Comparison of Minimum Distances
  • 6.4. Modulator
  • 6.4.1. Quadrature Modulator
  • 6.4.2. Serial Modulator
  • 6.4.3. All-Digital Modulator
  • 6.5. Demodulator
  • 6.5.1. Optimum ML Coherent Demodulator
  • 6.5.2. Optimum ML Noncoherent Demodulator
  • 6.5.3. Viterbi Demodulator
  • 6.5.4. Reduced-Complexity Viterbi Demodulator
  • 6.5.5. Reduction of the Number of Filters for LREC CPM
  • 6.5.6. ML Block Detection of Noncoherent CPM
  • 6.5.7. MSK-Type Demodulator
  • 6.5.8. Differential and Discriminator Demodulator
  • 6.5.9. Other Types of Demodulators
  • 6.6. Synchronization
  • 6.6.1. MSK-Type Synchronizer
  • 6.6.2. Squaring Loop and Fourth-Power Loop Synchronizers
  • 6.6.3. Other Types of Synchronizers
  • 6.7. Gaussian Minimum Shift Keying (GMSK)
  • 6.8. Summary
  • References
  • Chapter 7. Multi-h Continuous Phase Modulation
  • 7.1. MHPM Signal, Phase Tree, and Trellis
  • 7.2. Power Spectral Density
  • 7.3. Distance Properties and Error Probability
  • 7.4. Modulator
  • 7.5. Demodulator and Synchronization
  • 7.5.1. A Simple ML Demodulator for Multi-h Binary CPFSK
  • 7.5.2. Joint Demodulation and Carrier Synchronization of Multi-h CPFSK
  • 7.5.3. Joint Carrier Phase Tracking and Data Detection of Multi-h CPFSK
  • 7.5.4. Joint Demodulation, Carrier Synchronization, and Symbol Synchronization of M-ary Multi-h CPFSK
  • 7.5.5. Synchronization of MHPM
  • 7.6. Improved MHPM Schemes
  • 7.6.1. MHPM with Asymmetrical Modulation Indexes
  • 7.6.2. Multi-T Realization of Multi-h Phase Codes
  • 7.6.3. Correlatively Encoded Multi-h Signaling Technique
  • 7.6.4. Nonlinear Multi-h CPFSK
  • 7.7. Summary
  • Appendix 7A. Orthonormal Base Functions
  • References
  • Selected Bibliography
  • Chapter 8. Amplitude Shift Keying
  • 8.1. Pulse Amplitude Modulation
  • 8.1.1. Power Spectral Density
  • 8.1.2. Optimum Detection and Error Probability
  • 8.2. Bipolar Symmetrical MASK
  • 8.2.1. Power Spectral Density
  • 8.2.2. Modulator and Demodulator
  • 8.2.3. Error Probability
  • 8.3. Unipolar M-ary ASK
  • 8.3.1. Power Spectral Density
  • 8.3.2. Modulator and Demodulator
  • 8.3.3. Error Probability of Coherent Demodulation
  • 8.3.4. Error Probability of Noncoherent Demodulation
  • 8.4. Binary ASK (On-Off Keying)
  • 8.5. Comparing MASK with MPSK
  • 8.6. Summary
  • References
  • Selected Bibliography
  • Chapter 9. Quadrature Amplitude Modulation
  • 9.1. QAM Signal Description
  • 9.2. QAM Constellations
  • 9.2.1. Square QAM
  • 9.3. Power Spectral Density
  • 9.4. Modulator
  • 9.5. Demodulator
  • 9.6. Error Probability
  • 9.7. Synchronization
  • 9.8. Differential Coding in QAM
  • 9.9. Summary
  • Appendix 9A. Proof of (9.39)
  • References
  • Selected Bibliography
  • Chapter 10. Nonconstant-Envelope Bandwidth-Efficient Modulations
  • 10.1. Two-Symbol-Period Schemes and Optimum Demodulator
  • 10.2. Quasi-Bandlimited Modulation
  • 10.3. QORC, SQORC, and QOSRC
  • 10.4. IJF-OQPSK and TSI-OQPSK
  • 10.5. Superposed-QAM
  • 10.6. Quadrature Quadrature PSK
  • 10.7. Summary
  • References
  • Chapter 11. Modulations in Fading Channels, Equalization, and Diversity
  • 11.1. Fading Channel Characteristics
  • 11.1.1. Channel Characteristics
  • 11.1.2. Channel Classification
  • 11.1.3. Fading Envelope Distributions
  • 11.2. Digital Modulation in Slow, Flat Fading Channels
  • 11.2.1. Rayleigh Fading Channel
  • 11.2.2. Rician Fading Channel
  • 11.3. Digital Modulation in Frequency Selective Channels
  • 11.4. [pi]/4-DQPSK in Fading Channels
  • 11.5. MHPM in Fading Channels
  • 11.6. QAM in Fading Channels
  • 11.6.1. Square QAM
  • 11.6.2. Star QAM
  • 11.7. Overview of Remedial Measures Against Channel Impairment
  • 11.8. Channel Estimation and Correction
  • 11.8.1. Pilot Tone Methods
  • 11.8.2. Pilot Symbol Assisted Modulation (PSAM)
  • 11.8.3. Decision Feedback Channel Estimation (DFCE)
  • 11.9. Equalization
  • 11.9.1. Linear Equalizers (LE)
  • 11.9.2. Decision-Feedback Equalizers (DFE)
  • 11.10. Diversity Reception
  • 11.10.1. Diversity Techniques
  • 11.10.2. Combining Techniques
  • 11.11. MIMO Wireless Link
  • 11.11.1. Capacity of MIMO Channel
  • 11.11.2. MIMO Signaling: Space-Time Coding and Spatial Multiplexing
  • 11.12. Summary
  • Appendix 11A. Derivation of (11.80)
  • References
  • Selected Bibliography
  • Chapter 12. Orthogonal Frequency Division Multiplexing
  • 12.1. OFDM Signal and Spectrum
  • 12.1.1. Baseband OFDM Signal
  • 12.1.2. Bandpass OFDM Signal
  • 12.2. OFDM Modulator and Demodulator
  • 12.2.1. Analog OFDM Modem
  • 12.2.2. DFT-Based Digital OFDM Modem
  • 12.3. Real-Output DFT
  • 12.4. FFT Algorithms
  • 12.5. Partial FFT Algorithms
  • 12.5.1. The Pruned Partial FFT
  • 12.5.2. Transform Decomposition
  • 12.6. Cyclic Extension
  • 12.6.1. Continuous-Time OFDM
  • 12.6.2. Discrete-Time OFDM
  • 12.7. Spectrum Shaping
  • 12.8. Summary
  • Appendix 12A. Derivation of (12.23), (12.24), and (12.25)
  • Appendix 12B. Derivation of DFT-Based OFDM Modem
  • Appendix 12C. Recovering Data from Real OFDM Signal
  • Appendix 12D. Method of Generating Real OFDM Signal
  • References
  • Selected Bibliography
  • Chapter 13. Peak-to-Average Power Ratio Reduction
  • 13.1. Maximum Peak-to-Average Power Ratio
  • 13.2. Envelope Power and PAPR Distribution
  • 13.3. Introduction to PAPR Reduction Techniques
  • 13.4. Clipping and Clipping Noise Mitigation
  • 13.4.1. Decision-Aided Reconstruction
  • 13.4.2. Oversampling and Frequency-Domain Filtering
  • 13.4.3. Itertive Estimation and Canceling
  • 13.5. Amplitude Alteration Other Than Clipping
  • 13.5.1. Companding
  • 13.5.2. Complementary Clipping Transform
  • 13.6. Pre-IFFT Data Alteration
  • 13.6.1. Selective Mapping
  • 13.6.2. Repeated Random Phasor Transform
  • 13.6.3. Selective Scrambling
  • 13.6.4. Partial Transmit Sequences
  • 13.6.5. Dummy Sequence Insertion
  • 13.7. Coding
  • 13.7.1. Parity-Check Coding
  • 13.7.2. Rudin-Shapiro Coding
  • 13.7.3. Golay Complementary Sequences and Reed-Muller Codes
  • 13.8. Summary
  • References
  • Selected Bibliography
  • Chapter 14. Synchronization for OFDM
  • 14.1. Effect of Carrier Frequency Offset and Phase Noise
  • 14.2. Effect of Timing Errors
  • 14.3. Architecture of Synchronization System
  • 14.4. Synchronization Methods Overview
  • 14.5. Synchronization Using Cyclic Extension
  • 14.6. Synchronization Using Pilot Symbols
  • 14.7. The Schmidl-Cox Synchronizer
  • 14.7.1. Frame/Symbol Timing Estimator
  • 14.7.2. Performance of Timing Estimator
  • 14.7.3. Frequency Offset Estimator
  • 14.7.4. Performance of Frequency Offset Estimator
  • 14.8. The Coulson Synchronizer
  • 14.9. The Minn-Zeng-Bhargava Synchronizer
  • 14.10. The Shi-Serpedin Synchronizer
  • 14.11. More Training Symbol Patterns
  • 14.12. Synchronization for the IEEE 802.11a Standard
  • 14.13. Summary
  • References
  • Selected Bibliography
  • Chapter 15. OFDM in Multipath Fading Channels
  • 15.1. Performance of OFDM in Fading Channels
  • 15.1.1. Frequency Flat Slow Fading Channel
  • 15.1.2. Frequency Selective Slow Fading Channel
  • 15.1.3. Frequency Flat Fast Fading Channel
  • 15.1.4. Frequency Selective Fast Fading Channel
  • 15.1.5. Summary of Expressions of Fading Factors and ICI Terms
  • 15.2. Channel Estimation and Equalization
  • 15.2.1. Pilot-Assisted Channel Estimation
  • 15.2.2. Slow Fading Channel Estimation and Equalization
  • 15.2.3. Reduction of Complexity of the LMMSE Estimator
  • 15.2.4. Estimator for Fast Fading Channels
  • 15.2.5. Decision-Directed Channel Estimation
  • 15.3. Other Remedial Measures Against Fading
  • 15.3.1. Differential Detection
  • 15.3.2. Diversity Reception
  • 15.3.3. Coded OFDM (COFDM)
  • 15.3.4. MIMO-OFDM
  • 15.4. Summary
  • Appendix 15A. Derivation of (15.39) and (15.47)
  • Appendix 15B. Proof of (15.58), (15.65), (15.66), and (15.67)
  • Appendix 15C. Proof of (15.105)
  • References
  • Selected Bibliography
  • Chapter 16. Wavelet OFDM and MASK-OFDM
  • 16.1. Wavelet Fundamentals
  • 16.2. Multiscale Wavelet Modulation (MSM)
  • 16.3. Fractal Modulation
  • 16.4. Wavelet Packet Modulation (WPM)
  • 16.5. Wavelet PAM
  • 16.6. M-Band Wavelet Modulation (MWM)
  • 16.7. Overlapped Discrete Wavelet Multitone (DWMT) Modulation
  • 16.8. DCT-Based OFDM: MASK-OFDM
  • 16.9. Summary
  • Appendix 16A. Power Spectrum of MSM
  • References
  • Selected Bibliography
  • Appendix A. Power Spectral Densities of Signals
  • A.1. Bandpass Signals and Spectra
  • A.2. Bandpass Stationary Random Process and PSD
  • A.3. Power Spectral Densities of Digital Signals
  • A.3.1 Case 1. Data Symbols Are Uncorrelated
  • A.3.2 Case 2. Data Symbols Are Correlated
  • A.4. Power Spectral Densities of Digital Bandpass Signals
  • A.5. Power Spectral Densities of CPM Signals
  • References
  • Appendix B. Detection of Signals
  • B.1. Detection of Discrete Signals
  • B.1.1. Binary Hypothesis Test
  • B.1.2. Decision Criteria
  • B.1.3. M Hypotheses
  • B.2. Detection of Continuous Signals with Known Phases
  • B.2.1. Detection of Binary Signals
  • B.2.2. Decision of M-ary Signals
  • B.3. Detection of Continuous Signals with Unknown Phases
  • B.3.1. Receiver Structure
  • B.3.2. Receiver Error Performance
  • References
  • Appendix C. Mathematical Tables
  • C.1. Trigonometry Identities
  • C.2. Fourier Transform Pairs
  • C.3. Fourier Transform Theorems
  • C.4. Discrete Fourier Transform Theorems
  • C.5. Q-Function and Error Functions
  • C.6. Relations Between Q-Function and Error Functions
  • C.7. Approximation of Q-Function
  • References
  • Acronyms
  • About the Author
  • Index