Online stochastic combinatorial optimization /

Saved in:
Bibliographic Details
Author / Creator:Van Hentenryck, Pascal.
Imprint:Cambridge, Mass. : MIT Press, ©2006.
Description:1 online resource (xiii, 232 pages) : illustrations
Language:English
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11153550
Hidden Bibliographic Details
Other authors / contributors:Bent, Russell.
ISBN:9780262257152
0262257157
9781429477741
1429477741
0262220806
9780262220804
1282096834
9781282096837
0262513471
9780262513470
Digital file characteristics:data file
Notes:Includes bibliographical references (pages 219-227) and index.
English.
Print version record.
Summary:"Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available. It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems. And finally, the book discusses the framework's possible limitations and suggests directions for future research."--Publisher's website.
Other form:Print version: Van Hentenryck, Pascal. Online stochastic combinatorial optimization. Cambridge, Mass. : MIT Press, ©2006 0262220806 9780262220804

MARC

LEADER 00000cam a2200000Ia 4500
001 11153550
006 m o d
007 cr cnu---unuuu
008 070802s2006 maua ob 001 0 eng d
005 20240620193728.9
010 |z  2006048141 
015 |a GBA671808  |2 bnb 
015 |a GBA671808.  |2 bnb 
016 7 |z 013536716  |2 Uk 
016 7 |z 013536716.  |2 Uk 
019 |a 228171756  |a 228171758  |a 473754628  |a 482789918  |a 568007263  |a 648226703  |a 743198127  |a 815776339  |a 961522942  |a 962588850  |a 988516015  |a 991909696  |a 992095243  |a 1011875387  |a 1037514931  |a 1037901182  |a 1038574925  |a 1055391423  |a 1062931539  |a 1081201322  |a 1083603014  |a 1153523194  |a 1162569385 
020 |a 9780262257152  |q (electronic bk.) 
020 |a 0262257157  |q (electronic bk.) 
020 |a 9781429477741  |q (electronic bk.) 
020 |a 1429477741  |q (electronic bk.) 
020 |z 0262220806  |q (alk. paper) 
020 |z 9780262220804  |q (alk. paper) 
020 |a 1282096834 
020 |a 9781282096837 
020 |a 0262513471 
020 |a 9780262513470 
035 |a (OCoLC)162127133  |z (OCoLC)228171756  |z (OCoLC)228171758  |z (OCoLC)473754628  |z (OCoLC)482789918  |z (OCoLC)568007263  |z (OCoLC)648226703  |z (OCoLC)743198127  |z (OCoLC)815776339  |z (OCoLC)961522942  |z (OCoLC)962588850  |z (OCoLC)988516015  |z (OCoLC)991909696  |z (OCoLC)992095243  |z (OCoLC)1011875387  |z (OCoLC)1037514931  |z (OCoLC)1037901182  |z (OCoLC)1038574925  |z (OCoLC)1055391423  |z (OCoLC)1062931539  |z (OCoLC)1081201322  |z (OCoLC)1083603014  |z (OCoLC)1153523194  |z (OCoLC)1162569385 
035 9 |a (OCLCCM-CC)162127133 
037 |a 5140  |b MIT Press 
037 |a 9780262257152  |b MIT Press 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d N$T  |d IDEBK  |d OCLCQ  |d IEEEE  |d OCLCF  |d P4I  |d CCO  |d E7B  |d UV0  |d DKDLA  |d OCLCQ  |d EBLCP  |d DEBSZ  |d OCLCQ  |d AZK  |d AGLDB  |d MOR  |d PIFBR  |d PIFSG  |d ZCU  |d OCLCQ  |d MERUC  |d OCLCQ  |d NJR  |d WY@  |d U3W  |d OCLCQ  |d BRL  |d STF  |d WRM  |d OCLCQ  |d VTS  |d MERER  |d OCLCQ  |d ICG  |d CUY  |d OCLCQ  |d INT  |d VT2  |d OCLCQ  |d WYU  |d MITPR  |d OCLCQ  |d A6Q  |d DKC  |d OCLCQ  |d M8D  |d OCLCQ  |d UKCRE  |d VLY  |d AJS 
049 |a MAIN 
050 4 |a T57.32  |b .V36 2006eb 
072 7 |a SCI  |x 064000  |2 bisacsh 
072 7 |a TEC  |x 029000  |2 bisacsh 
100 1 |a Van Hentenryck, Pascal.  |0 http://id.loc.gov/authorities/names/n88013863 
245 1 0 |a Online stochastic combinatorial optimization /  |c Pascal Van Hentenryck and Russell Bent. 
260 |a Cambridge, Mass. :  |b MIT Press,  |c ©2006. 
300 |a 1 online resource (xiii, 232 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
504 |a Includes bibliographical references (pages 219-227) and index. 
588 0 |a Print version record. 
505 0 0 |g 1.  |t Introduction --  |g 2.  |t Online stochastic scheduling --  |g 3.  |t Theoretical analysis --  |g 4.  |t Packet scheduling --  |g 5.  |t Online stochastic reservations --  |g 6.  |t Online multiknapsack problems --  |g 7.  |t Vehicle routing with time windows --  |g 8.  |t Online stochastic routing --  |g 9.  |t Online vehicle dispatching --  |g 10.  |t Online vehicle routing with time windows --  |g 11.  |t Learning distributions --  |g 12.  |t Historical sampling --  |g 13.  |t Markov chance-decision processes. 
520 |a "Online decision making under uncertainty and time constraints represents one of the most challenging problems for robust intelligent agents. In an increasingly dynamic, interconnected, and real-time world, intelligent systems must adapt dynamically to uncertainties, update existing plans to accommodate new requests and events, and produce high-quality decisions under severe time constraints. Such online decision-making applications are becoming increasingly common: ambulance dispatching and emergency city-evacuation routing, for example, are inherently online decision-making problems; other applications include packet scheduling for Internet communications and reservation systems. This book presents a novel framework, online stochastic optimization, to address this challenge. This framework assumes that the distribution of future requests, or an approximation thereof, is available for sampling, as is the case in many applications that make either historical data or predictive models available. It assumes additionally that the distribution of future requests is independent of current decisions, which is also the case in a variety of applications and holds significant computational advantages. The book presents several online stochastic algorithms implementing the framework, provides performance guarantees, and demonstrates a variety of applications. It discusses how to relax some of the assumptions in using historical sampling and machine learning and analyzes different underlying algorithmic problems. And finally, the book discusses the framework's possible limitations and suggests directions for future research."--Publisher's website. 
546 |a English. 
650 0 |a Stochastic processes.  |0 http://id.loc.gov/authorities/subjects/sh85128181 
650 0 |a Combinatorial optimization.  |0 http://id.loc.gov/authorities/subjects/sh85028809 
650 0 |a Online algorithms.  |0 http://id.loc.gov/authorities/subjects/sh98004683 
650 0 |a Operations research.  |0 http://id.loc.gov/authorities/subjects/sh85095020 
650 7 |a SCIENCE  |x System Theory.  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING  |x Operations Research.  |2 bisacsh 
650 7 |a Combinatorial optimization.  |2 fast  |0 (OCoLC)fst00868980 
650 7 |a Online algorithms.  |2 fast  |0 (OCoLC)fst01045924 
650 7 |a Operations research.  |2 fast  |0 (OCoLC)fst01046387 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
653 |a COMPUTER SCIENCE/General 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Bent, Russell.  |0 http://id.loc.gov/authorities/names/n2006040597 
776 0 8 |i Print version:  |a Van Hentenryck, Pascal.  |t Online stochastic combinatorial optimization.  |d Cambridge, Mass. : MIT Press, ©2006  |z 0262220806  |z 9780262220804  |w (DLC) 2006048141  |w (OCoLC)69680204 
903 |a HeVa 
929 |a oclccm 
999 f f |i d4bb3ac2-505c-550c-92a2-06a989122586  |s 889638d5-039a-57ac-8201-bbb9a574bc68 
928 |t Library of Congress classification  |a T57.32 .V36 2006eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=176847  |z eBooks on EBSCOhost  |g ebooks  |i 12240803