Order structure and topological methods in nonlinear partial differential equations. Vol. 1, Maximum principles and applications /

Saved in:
Bibliographic Details
Author / Creator:Du, Yihong.
Imprint:Hackensack, N.J. : World Scientific, ©2006.
Description:1 online resource (x, 190 pages).
Language:English
Series:Series on partial differential equations and applications ; v. 2
Series on partial differential equations and applications ; v. 2.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11156653
Hidden Bibliographic Details
ISBN:9789812774446
9812774440
9789812566249
9812566244
Notes:Includes bibliographical references (pages 181-188) and index.
Print version record.
Summary:The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems. The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especia.
Other form:Print version: Du, Yihong. Order structure and topological methods in nonlinear partial differential equations. Vol. 1, Maximum principles and applications. Hackensack, N.J. : World Scientific, ©2006 9812566244 9789812566249

MARC

LEADER 00000cam a2200000Ia 4500
001 11156653
006 m o d
007 cr cnu---unuuu
008 071126s2006 nju ob 001 0 eng d
005 20240702212206.7
020 |a 9789812774446  |q (electronic bk.) 
020 |a 9812774440  |q (electronic bk.) 
020 |z 9789812566249 
020 |z 9812566244 
035 |a (OCoLC)182520946 
035 9 |a (OCLCCM-CC)182520946 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d IDEBK  |d OCLCQ  |d OCLCF  |d OCLCO  |d OCLCQ  |d NLGGC  |d OCLCQ  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d OCLCQ  |d U3W  |d STF  |d VTS  |d AGLDB  |d INT  |d VT2  |d AU@  |d OCLCQ  |d JBG  |d WYU  |d TKN  |d OCLCQ  |d M8D  |d UKAHL 
049 |a MAIN 
050 4 |a QA374  |b .D7 2006eb 
072 7 |a MAT  |x 007020  |2 bisacsh 
100 1 |a Du, Yihong.  |0 http://id.loc.gov/authorities/names/no2007009477 
245 1 0 |a Order structure and topological methods in nonlinear partial differential equations.  |n Vol. 1,  |p Maximum principles and applications /  |c Yihong Du. 
260 |a Hackensack, N.J. :  |b World Scientific,  |c ©2006. 
300 |a 1 online resource (x, 190 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Series on partial differential equations and applications ;  |v v. 2 
504 |a Includes bibliographical references (pages 181-188) and index. 
588 0 |a Print version record. 
505 0 |a Preface -- 1. Krein-Rutman theorem and the principal eigenvalue -- 2. Maximum principles revisited. 2.1. Equivalent forms of the maximum principle. 2.2. Maximum principle in W[symbol]([symbol]) -- 3. The moving plane method. 3.1. Symmetry over bounded domains. 3.2. Symmetry over the entire space. 3.3. Positivity of nonnegative solutions -- 4. The method of upper and lower solutions. 4.1. Classical upper and lower solutions. 4.2. Weak upper and lower solutions -- 5. The logistic equation. 5.1. The classical case. 5.2. The degenerate logistic equation. 5.3. Perturbation and profile of solutions -- 6. Boundary blow-up problems. 6.1. The Keller-Osserman result and its generalizations. 6.2. Blow-up rate and uniqueness. 6.3. Logistic type equations with weights -- 7. Symmetry and Liouville type results over half and entire spaces. 7.1. Symmetry in a half space without strong maximum principle. 7.2. Uniqueness results of logistic type equations over R[symbol]. 7.3. Partial symmetry in the entire space. 7.4. Some Liouville type results. 
520 |a The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems. The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especia. 
650 0 |a Differential equations, Partial  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85037915 
650 0 |a Differential equations, Nonlinear  |x Numerical solutions.  |0 http://id.loc.gov/authorities/subjects/sh85037908 
650 7 |a MATHEMATICS  |x Differential Equations  |x Partial.  |2 bisacsh 
650 7 |a Differential equations, Nonlinear  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893478 
650 7 |a Differential equations, Partial  |x Numerical solutions.  |2 fast  |0 (OCoLC)fst00893488 
655 4 |a Electronic books. 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Du, Yihong.  |t Order structure and topological methods in nonlinear partial differential equations. Vol. 1, Maximum principles and applications.  |d Hackensack, N.J. : World Scientific, ©2006  |z 9812566244  |z 9789812566249  |w (DLC) 2006283978  |w (OCoLC)74354403 
830 0 |a Series on partial differential equations and applications ;  |v v. 2.  |0 http://id.loc.gov/authorities/names/no2003008908 
903 |a HeVa 
929 |a oclccm 
999 f f |i d6c1eed8-0e18-538b-813c-c942ff99f10e  |s 9de5c8d4-76d5-5943-bacb-2cf44cef93ab 
928 |t Library of Congress classification  |a QA374 .D7 2006eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=210609  |z eBooks on EBSCOhost  |g ebooks  |i 12243096