Feature extraction & image processing for computer vision /
Saved in:
Author / Creator: | Nixon, Mark S. |
---|---|
Edition: | 3rd ed. |
Imprint: | Oxford : Academic Press, ©2012. |
Description: | 1 online resource : illustrations. |
Language: | English |
Series: | Engineering professional collection |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11157728 |
Table of Contents:
- Front Cover; Feature Extraction & Image Processing for Computer Vision; Copyright page; Contents; Preface; What is new in the third edition?; Why did we write this book?; The book and its support; In gratitude; Final message; About the authors; 1 Introduction; 1.1 Overview; 1.2 Human and computer vision; 1.3 The human vision system; 1.3.1 The eye; 1.3.2 The neural system; 1.3.3 Processing; 1.4 Computer vision systems; 1.4.1 Cameras; 1.4.2 Computer interfaces; 1.4.3 Processing an image; 1.5 Mathematical systems; 1.5.1 Mathematical tools; 1.5.2 Hello Matlab, hello images!; 1.5.3 Hello Mathcad!
- 1.6 Associated literature1.6.1 Journals, magazines, and conferences; 1.6.2 Textbooks; 1.6.3 The Web; 1.7 Conclusions; 1.8 References; 2 Images, sampling, and frequency domain processing; 2.1 Overview; 2.2 Image formation; 2.3 The Fourier transform; 2.4 The sampling criterion; 2.5 The discrete Fourier transform; 2.5.1 1D transform; 2.5.2 2D transform; 2.6 Other properties of the Fourier transform; 2.6.1 Shift invariance; 2.6.2 Rotation; 2.6.3 Frequency scaling; 2.6.4 Superposition (linearity); 2.7 Transforms other than Fourier; 2.7.1 Discrete cosine transform; 2.7.2 Discrete Hartley transform.
- 2.7.3 Introductory wavelets2.7.3.1 Gabor wavelet; 2.7.3.2 Haar wavelet; 2.7.4 Other transforms; 2.8 Applications using frequency domain properties; 2.9 Further reading; 2.10 References; 3 Basic image processing operations; 3.1 Overview; 3.2 Histograms; 3.3 Point operators; 3.3.1 Basic point operations; 3.3.2 Histogram normalization; 3.3.3 Histogram equalization; 3.3.4 Thresholding; 3.4 Group operations; 3.4.1 Template convolution; 3.4.2 Averaging operator; 3.4.3 On different template size; 3.4.4 Gaussian averaging operator; 3.4.5 More on averaging; 3.5 Other statistical operators.
- 3.5.1 Median filter3.5.2 Mode filter; 3.5.3 Anisotropic diffusion; 3.5.4 Force field transform; 3.5.5 Comparison of statistical operators; 3.6 Mathematical morphology; 3.6.1 Morphological operators; 3.6.2 Gray-level morphology; 3.6.3 Gray-level erosion and dilation; 3.6.4 Minkowski operators; 3.7 Further reading; 3.8 References; 4 Low-level feature extraction (including edge detection); 4.1 Overview; 4.2 Edge detection; 4.2.1 First-order edge-detection operators; 4.2.1.1 Basic operators; 4.2.1.2 Analysis of the basic operators; 4.2.1.3 Prewitt edge-detection operator.
- 4.2.1.4 Sobel edge-detection operator4.2.1.5 The Canny edge detector; 4.2.2 Second-order edge-detection operators; 4.2.2.1 Motivation; 4.2.2.2 Basic operators: the Laplacian; 4.2.2.3 The Marr-Hildreth operator; 4.2.3 Other edge-detection operators; 4.2.4 Comparison of edge-detection operators; 4.2.5 Further reading on edge detection; 4.3 Phase congruency; 4.4 Localized feature extraction; 4.4.1 Detecting image curvature (corner extraction); 4.4.1.1 Definition of curvature; 4.4.1.2 Computing differences in edge direction; 4.4.1.3 Measuring curvature by changes in intensity (differentiation).