Biological networks /

Saved in:
Bibliographic Details
Imprint:Singapore ; Hackensack, NJ : World Scientific, ©2007.
Description:1 online resource (xiv, 516 pages) : illustrations.
Language:English
Series:Complex systems and interdisciplinary science ; v. 3
Complex systems and interdisciplinary science ; v. 3.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11178967
Hidden Bibliographic Details
Other authors / contributors:Képès, François.
ISBN:9789812772367
9812772367
1281912018
9781281912015
9786611912017
6611912010
Notes:Includes bibliographical references and index.
English.
Print version record.
Summary:This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex systems approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach. Sample Chapter(s)
Chapter 1: Scale-Free Networks in Biology (821 KB)

C.
Other form:Print version: Biological networks. Singapore ; Hackensack, NJ : World Scientific, ©2007 9789812706959 981270695X

MARC

LEADER 00000cam a2200000Ia 4500
001 11178967
006 m o d
007 cr cnu---unuuu
008 081015s2007 si a ob 001 0 eng d
005 20240711194419.9
019 |a 1162352962 
020 |a 9789812772367  |q (electronic bk.) 
020 |a 9812772367  |q (electronic bk.) 
020 |a 1281912018 
020 |a 9781281912015 
020 |a 9786611912017 
020 |a 6611912010 
035 |a (OCoLC)262529963  |z (OCoLC)1162352962 
035 9 |a (OCLCCM-CC)262529963 
040 |a N$T  |b eng  |e pn  |c N$T  |d YDXCP  |d OCLCQ  |d OCLCF  |d NLGGC  |d OCLCO  |d OCLCQ  |d VTS  |d VLY  |d AJS 
049 |a MAIN 
050 4 |a QH324.2  |b .B58 2007eb 
072 7 |a COM  |x 082000  |2 bisacsh 
245 0 0 |a Biological networks /  |c editor, François Képès. 
260 |a Singapore ;  |a Hackensack, NJ :  |b World Scientific,  |c ©2007. 
300 |a 1 online resource (xiv, 516 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Complex systems and interdisciplinary science ;  |v v. 3 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Preface; Challenges; Outline; Acknowledgements; Contributors; Chapter 1 Scale-Free Networks in Biology Eivind Almaas, Alexei Vázquez and Albert-László Barabási; 1. Introduction; 2. Characterizing Network Topology; 2.1. Degree Distribution; 2.2. Clustering Coefficient; 2.3. Subgraphs and Motifs; 3. Network Models; 3.1. Random Network Model; 3.2. Scale-Free Network Model; 3.3. Hierarchical Network Model; 3.4. Bose-Einstein Condensation and Networks; 4. Network Utilization; 4.1. Flux Utilization; 4.2. Gene Interactions; 5. Conclusion; References 
505 8 |a Chapter 2 Modularity in Biological Networks Ricard V. Solé, Sergi Valverde and Carlos Rodriguez-Caso1. Introduction; 2. Topological Overlap; 3. Modular Networks: The Role of Tinkering; 4. Conclusions; Acknowledgments; References; Chapter 3 Inference of Biological Regulatory Networks: Machine Learning Approaches Florence d'Alché-Buc; 1. Introduction; 1.1. Feasibility of Inference; 1.2. Overview of Methods; 2. The Inference of Gene Regulatory Networks as a Machine Learning Problem; 2.1. Gene Regulatory Networks; 2.2. Machine Learning: A Short Definition 
505 8 |a 2.3. A Methodology for the Conception of a Learning Algorithm3. Representation Issues; 3.1. Prerequisites; 3.2. Questions When Accounting for Dynamics; 3.2.1. Encoding the Data; 3.2.2. Identifiability, Learnability and Sample Complexity; 3.2.3. Time-Scale, Sampling Frequency and Irregular Sampling; 3.2.4. Continuous versus Discretized Encoding; 3.3. Deterministic Models of Dynamics; 3.3.1. Temporal Boolean Network Models; 3.3.2. Linear Networks; 3.3.3. Artificial Recurrent Neural Networks; 3.4. Probabilistic Models of Dynamics; 3.4.1. Linear Models and Linear State-Space Models 
505 8 |a 3.4.2. Dynamical Bayesian Networks Using non Parametric Regression for Conditional Probability Distributions (CPD)3.4.3. Models of Biochemical Processes; 3.5. Static Models of Causal Dependencies; 3.5.1. Bayesian Networks; 3.5.2. Probabilistic Relational Models; 3.5.3. Module Networks; 3.5.4. Factor Graph Networks (FGN); 4. Learning and Optimization; 4.1. Exact Learning and Best-Fit Approaches; 4.2. Statistical Learning; 4.2.1. Mean Squared Error and Weight Decay for Neural Networks; 4.2.2. Maximum A Posteriori Approaches for Learning Parameters of Bayesian Networks; 4.2.3. Structure Learning 
505 8 |a 5. Validation5.1. Introduction to Validation; 5.2. Statistical Validation of Network Inference; 5.2.1. Model Selection via Sampling and Re-sampling Methods; 5.2.2. Prediction on Unseen Data; 5.2.3. Performance Evaluation on Known Networks (Simulated or Real); 5.3. Biological Validation; 6. Conclusion and Perspectives; References; Chapter 4 Transcriptional Networks François Képès; 1. Introduction; 2. Interacting Partners; 2.1. Genes and DNA Regulatory Regions; 2.2. Regulatory Proteins or Dedicated Transcription Factors 
520 |a This volume presents a timely and comprehensive overview of biological networks at all organization levels in the spirit of the complex systems approach. It discusses the transversal issues and fundamental principles as well as the overall structure, dynamics, and modeling of a wide array of biological networks at the molecular, cellular, and population levels. Anchored in both empirical data and a strong theoretical background, the book therefore lends valuable credence to the complex systems approach. <i>Sample Chapter(s)</i><br>Chapter 1: Scale-Free Networks in Biology (821 KB)<br><br><i>C. 
546 |a English. 
650 0 |a Bioinformatics.  |0 http://id.loc.gov/authorities/subjects/sh00003585 
650 0 |a Computational biology.  |0 http://id.loc.gov/authorities/subjects/sh2003008355 
650 7 |a COMPUTERS  |x Bioinformatics.  |2 bisacsh 
650 7 |a Bioinformatics.  |2 fast  |0 (OCoLC)fst00832181 
650 7 |a Computational biology.  |2 fast  |0 (OCoLC)fst00871990 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Képès, François.  |0 http://id.loc.gov/authorities/names/n2006025298 
776 0 8 |i Print version:  |t Biological networks.  |d Singapore ; Hackensack, NJ : World Scientific, ©2007  |z 9789812706959  |z 981270695X  |w (OCoLC)154672023 
830 0 |a Complex systems and interdisciplinary science ;  |v v. 3.  |0 http://id.loc.gov/authorities/names/no2007088956 
903 |a HeVa 
929 |a oclccm 
999 f f |i 8842abaa-564d-5f44-a54e-e510a0e3e8a4  |s 4ae11fbb-3044-5614-87eb-e3552b268f4b 
928 |t Library of Congress classification  |a QH324.2 .B58 2007eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=236027  |z eBooks on EBSCOhost  |g ebooks  |i 12255318