Spectral asymptotics in the semi-classical limit /
Saved in:
Author / Creator: | Dimassi, Mouez. |
---|---|
Imprint: | Cambridge, U.K. ; New York : Cambridge University Press, 1999. |
Description: | 1 online resource (xi, 227 pages) |
Language: | English |
Series: | London Mathematical Society lecture note series ; 268 London Mathematical Society lecture note series ; 268. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11181236 |
MARC
LEADER | 00000cam a2200000Ka 4500 | ||
---|---|---|---|
001 | 11181236 | ||
005 | 20210426223719.8 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1999 enk ob 001 0 eng d | ||
019 | |a 726825387 | ||
020 | |a 9781107362796 |q (electronic bk.) | ||
020 | |a 1107362792 |q (electronic bk.) | ||
020 | |a 9780511662195 |q (e-book) | ||
020 | |a 051166219X |q (e-book) | ||
020 | |z 0521665442 | ||
020 | |z 9780521665445 | ||
035 | |a (OCoLC)836871651 |z (OCoLC)726825387 | ||
035 | 9 | |a (OCLCCM-CC)836871651 | |
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d HEBIS |d OCLCO |d COO |d VTS |d REC |d STF |d AU@ |d M8D |d OCLCQ |d K6U | ||
049 | |a MAIN | ||
050 | 4 | |a QC20.7.M53 |b D56 1999eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
084 | |a 31.40 |2 bcl | ||
100 | 1 | |a Dimassi, Mouez. | |
245 | 1 | 0 | |a Spectral asymptotics in the semi-classical limit / |c Mouez Dimassi, Johannes Sjöstrand. |
260 | |a Cambridge, U.K. ; |a New York : |b Cambridge University Press, |c 1999. | ||
300 | |a 1 online resource (xi, 227 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 268 | |
504 | |a Includes bibliographical references (pages 209-220) and index. | ||
505 | 0 | 0 | |t Local symplectic geometry -- |t The WKB-method -- |t The WKB-method for a potential minimum -- |t Self-adjoint operators -- |t The method of stationary phase -- |t Tunnel effect and interaction matrix -- |t @h-pseudodifferential operators -- |t Functional calculus for pseudodifferential operators -- |t Trace class operators and applications of the functional calculus -- |t More precise spectral asymptotics for non-critical Hamiltonians -- |t Improvement when the periodic trajectories form a set of measure 0 -- |t A more general study of the trace -- |t Spectral theory for perturbed periodic problems -- |t Normal forms for some scalar pseudodifferential operators -- |t Spectrum of operators with periodic bicharacteristics. |
588 | 0 | |a Print version record. | |
520 | |a Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course. | ||
650 | 0 | |a Microlocal analysis. |0 http://id.loc.gov/authorities/subjects/sh92003594 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Approximation theory. |0 http://id.loc.gov/authorities/subjects/sh85006190 | |
650 | 0 | |a Spectral theory (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85126408 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Analyse microlocale. | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Approximation, Théorie de l' | |
650 | 6 | |a Spectre (Mathématiques) | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Approximation theory. |2 fast |0 (OCoLC)fst00811829 | |
650 | 7 | |a Mathematical physics. |2 fast |0 (OCoLC)fst01012104 | |
650 | 7 | |a Microlocal analysis. |2 fast |0 (OCoLC)fst01019887 | |
650 | 7 | |a Quantum theory. |2 fast |0 (OCoLC)fst01085128 | |
650 | 7 | |a Spectral theory (Mathematics) |2 fast |0 (OCoLC)fst01129072 | |
650 | 7 | |a Quasiklassische Näherung |2 gnd |0 http://d-nb.info/gnd/4296820-3 | |
650 | 1 | 7 | |a Analyse (wiskunde) |2 gtt |
650 | 7 | |a Operadores microlocais. |2 larpcal | |
650 | 7 | |a Approximation, Théorie de l'. |2 ram | |
650 | 7 | |a Théorie quantique. |2 ram | |
650 | 7 | |a Physique mathématique |x Théorie asymptotique. |2 ram | |
650 | 7 | |a Théorie spectrale (Mathématiques) |2 ram | |
650 | 7 | |a Valeurs propres. |2 ram | |
650 | 7 | |a Mécanique. |2 ram | |
655 | 0 | |a Electronic books. | |
655 | 4 | |a Electronic books. | |
700 | 1 | |a Sjöstrand, J. |q (Johannes) |0 http://id.loc.gov/authorities/names/n88630485 | |
776 | 0 | 8 | |i Print version: |a Dimassi, Mouez. |t Spectral asymptotics in the semi-classical limit. |d Cambridge, U.K. ; New York : Cambridge University Press, 1999 |z 0521665442 |w (DLC) 00267617 |w (OCoLC)41338809 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 268. |0 http://id.loc.gov/authorities/names/n42015587 | |
903 | |a HeVa | ||
929 | |a oclccm | ||
999 | f | f | |i 2ac6dcf8-a857-5468-a37c-66459e7bdab1 |s c6b45fc1-37ee-58e8-8210-a37d1e916a16 |
928 | |t Library of Congress classification |a QC20.7.M53 D56 1999eb |l Online |c UC-FullText |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=552456 |z eBooks on EBSCOhost |g ebooks |i 12387240 |