Spectral asymptotics in the semi-classical limit /

Saved in:
Bibliographic Details
Author / Creator:Dimassi, Mouez.
Imprint:Cambridge, U.K. ; New York : Cambridge University Press, 1999.
Description:1 online resource (xi, 227 pages)
Language:English
Series:London Mathematical Society lecture note series ; 268
London Mathematical Society lecture note series ; 268.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11181236
Hidden Bibliographic Details
Other authors / contributors:Sjöstrand, J. (Johannes)
ISBN:9781107362796
1107362792
9780511662195
051166219X
0521665442
9780521665445
Notes:Includes bibliographical references (pages 209-220) and index.
Print version record.
Summary:Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course.
Other form:Print version: Dimassi, Mouez. Spectral asymptotics in the semi-classical limit. Cambridge, U.K. ; New York : Cambridge University Press, 1999 0521665442

MARC

LEADER 00000cam a2200000Ka 4500
001 11181236
005 20210426223719.8
006 m o d
007 cr cnu---unuuu
008 130408s1999 enk ob 001 0 eng d
019 |a 726825387 
020 |a 9781107362796  |q (electronic bk.) 
020 |a 1107362792  |q (electronic bk.) 
020 |a 9780511662195  |q (e-book) 
020 |a 051166219X  |q (e-book) 
020 |z 0521665442 
020 |z 9780521665445 
035 |a (OCoLC)836871651  |z (OCoLC)726825387 
035 9 |a (OCLCCM-CC)836871651 
040 |a N$T  |b eng  |e pn  |c N$T  |d E7B  |d OCLCF  |d YDXCP  |d OCLCQ  |d HEBIS  |d OCLCO  |d COO  |d VTS  |d REC  |d STF  |d AU@  |d M8D  |d OCLCQ  |d K6U 
049 |a MAIN 
050 4 |a QC20.7.M53  |b D56 1999eb 
072 7 |a SCI  |x 040000  |2 bisacsh 
084 |a 31.40  |2 bcl 
100 1 |a Dimassi, Mouez. 
245 1 0 |a Spectral asymptotics in the semi-classical limit /  |c Mouez Dimassi, Johannes Sjöstrand. 
260 |a Cambridge, U.K. ;  |a New York :  |b Cambridge University Press,  |c 1999. 
300 |a 1 online resource (xi, 227 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a London Mathematical Society lecture note series ;  |v 268 
504 |a Includes bibliographical references (pages 209-220) and index. 
505 0 0 |t Local symplectic geometry --  |t The WKB-method --  |t The WKB-method for a potential minimum --  |t Self-adjoint operators --  |t The method of stationary phase --  |t Tunnel effect and interaction matrix --  |t @h-pseudodifferential operators --  |t Functional calculus for pseudodifferential operators --  |t Trace class operators and applications of the functional calculus --  |t More precise spectral asymptotics for non-critical Hamiltonians --  |t Improvement when the periodic trajectories form a set of measure 0 --  |t A more general study of the trace --  |t Spectral theory for perturbed periodic problems --  |t Normal forms for some scalar pseudodifferential operators --  |t Spectrum of operators with periodic bicharacteristics. 
588 0 |a Print version record. 
520 |a Semiclassical approximation addresses the important relationship between quantum and classical mechanics. There has been a very strong development in the mathematical theory, mainly thanks to methods of microlocal analysis. This book develops the basic methods, including the WKB-method, stationary phase and h-pseudodifferential operators. The applications include results on the tunnel effect, the asymptotics of eigenvalues in relation to classical trajectories and normal forms, plus slow perturbations of periodic Schrödinger operators appearing in solid state physics. No previous specialized knowledge in quantum mechanics or microlocal analysis is assumed, and only general facts about spectral theory in Hilbert space, distributions, Fourier transforms and some differential geometry belong to the prerequisites. This book is addressed to researchers and graduate students in mathematical analysis, as well as physicists who are interested in rigorous results. A fairly large fraction can be (and has been) covered in a one semester course. 
650 0 |a Microlocal analysis.  |0 http://id.loc.gov/authorities/subjects/sh92003594 
650 0 |a Quantum theory.  |0 http://id.loc.gov/authorities/subjects/sh85109469 
650 0 |a Approximation theory.  |0 http://id.loc.gov/authorities/subjects/sh85006190 
650 0 |a Spectral theory (Mathematics)  |0 http://id.loc.gov/authorities/subjects/sh85126408 
650 0 |a Mathematical physics.  |0 http://id.loc.gov/authorities/subjects/sh85082129 
650 6 |a Analyse microlocale. 
650 6 |a Théorie quantique. 
650 6 |a Approximation, Théorie de l' 
650 6 |a Spectre (Mathématiques) 
650 6 |a Physique mathématique. 
650 7 |a SCIENCE  |x Physics  |x Mathematical & Computational.  |2 bisacsh 
650 7 |a Approximation theory.  |2 fast  |0 (OCoLC)fst00811829 
650 7 |a Mathematical physics.  |2 fast  |0 (OCoLC)fst01012104 
650 7 |a Microlocal analysis.  |2 fast  |0 (OCoLC)fst01019887 
650 7 |a Quantum theory.  |2 fast  |0 (OCoLC)fst01085128 
650 7 |a Spectral theory (Mathematics)  |2 fast  |0 (OCoLC)fst01129072 
650 7 |a Quasiklassische Näherung  |2 gnd  |0 http://d-nb.info/gnd/4296820-3 
650 1 7 |a Analyse (wiskunde)  |2 gtt 
650 7 |a Operadores microlocais.  |2 larpcal 
650 7 |a Approximation, Théorie de l'.  |2 ram 
650 7 |a Théorie quantique.  |2 ram 
650 7 |a Physique mathématique  |x Théorie asymptotique.  |2 ram 
650 7 |a Théorie spectrale (Mathématiques)  |2 ram 
650 7 |a Valeurs propres.  |2 ram 
650 7 |a Mécanique.  |2 ram 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Sjöstrand, J.  |q (Johannes)  |0 http://id.loc.gov/authorities/names/n88630485 
776 0 8 |i Print version:  |a Dimassi, Mouez.  |t Spectral asymptotics in the semi-classical limit.  |d Cambridge, U.K. ; New York : Cambridge University Press, 1999  |z 0521665442  |w (DLC) 00267617  |w (OCoLC)41338809 
830 0 |a London Mathematical Society lecture note series ;  |v 268.  |0 http://id.loc.gov/authorities/names/n42015587 
903 |a HeVa 
929 |a oclccm 
999 f f |i 2ac6dcf8-a857-5468-a37c-66459e7bdab1  |s c6b45fc1-37ee-58e8-8210-a37d1e916a16 
928 |t Library of Congress classification  |a QC20.7.M53 D56 1999eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=552456  |z eBooks on EBSCOhost  |g ebooks  |i 12387240