Aspects of Sobolev-type inequalities /
Saved in:
Author / Creator: | Saloff-Coste, L. |
---|---|
Imprint: | Cambridge ; New York : Cambridge University Press, 2002. |
Description: | 1 online resource (x, 190 pages) : illustrations |
Language: | English |
Series: | London Mathematical Society lecture note series ; 289 London Mathematical Society lecture note series ; 289. |
Subject: | |
Format: | E-Resource Book |
URL for this record: | http://pi.lib.uchicago.edu/1001/cat/bib/11181416 |
Table of Contents:
- 1 Sobolev inequalities in R[superscript n] 7
- 1.1 Sobolev inequalities 7
- 1.1.2 The proof due to Gagliardo and to Nirenberg 9
- 1.1.3 p = 1 implies p [greater than or equal] 1 10
- 1.2 Riesz potentials 11
- 1.2.1 Another approach to Sobolev inequalities 11
- 1.2.2 Marcinkiewicz interpolation theorem 13
- 1.2.3 Proof of Sobolev Theorem 1.2.1 16
- 1.3 Best constants 16
- 1.3.1 The case p = 1: isoperimetry 16
- 1.3.2 A complete proof with best constant for p = 1 18
- 1.3.3 The case p> 1 20
- 1.4 Some other Sobolev inequalities 21
- 1.4.1 The case p> n 21
- 1.4.2 The case p = n 24
- 1.4.3 Higher derivatives 26
- 1.5 Sobolev
- Poincare inequalities on balls 29
- 1.5.1 The Neumann and Dirichlet eigenvalues 29
- 1.5.2 Poincare inequalities on Euclidean balls 30
- 1.5.3 Sobolev
- Poincare inequalities 31
- 2 Moser's elliptic Harnack inequality 33
- 2.1 Elliptic operators in divergence form 33
- 2.1.1 Divergence form 33
- 2.1.2 Uniform ellipticity 34
- 2.1.3 A Sobolev-type inequality for Moser's iteration 37
- 2.2 Subsolutions and supersolutions 38
- 2.2.1 Subsolutions 38
- 2.2.2 Supersolutions 43
- 2.2.3 An abstract lemma 47
- 2.3 Harnack inequalities and continuity 49
- 2.3.1 Harnack inequalities 49
- 2.3.2 Holder continuity 50
- 3 Sobolev inequalities on manifolds 53
- 3.1.1 Notation concerning Riemannian manifolds 53
- 3.1.2 Isoperimetry 55
- 3.1.3 Sobolev inequalities and volume growth 57
- 3.2 Weak and strong Sobolev inequalities 60
- 3.2.1 Examples of weak Sobolev inequalities 60
- 3.2.2 (S[superscript [theta] subscript r, s])-inequalities: the parameters q and v 61
- 3.2.3 The case 0 <q <[infinity] 63
- 3.2.4 The case 1 = [infinity] 66
- 3.2.5 The case -[infinity] <q <0 68
- 3.2.6 Increasing p 70
- 3.2.7 Local versions 72
- 3.3.1 Pseudo-Poincare inequalities 73
- 3.3.2 Pseudo-Poincare technique: local version 75
- 3.3.3 Lie groups 77
- 3.3.4 Pseudo-Poincare inequalities on Lie groups 79
- 3.3.5 Ricci [greater than or equal] 0 and maximal volume growth 82
- 3.3.6 Sobolev inequality in precompact regions 85
- 4 Two applications 87
- 4.1 Ultracontractivity 87
- 4.1.1 Nash inequality implies ultracontractivity 87
- 4.1.2 The converse 91
- 4.2 Gaussian heat kernel estimates 93
- 4.2.1 The Gaffney-Davies L[superscript 2] estimate 93
- 4.2.2 Complex interpolation 95
- 4.2.3 Pointwise Gaussian upper bounds 98
- 4.2.4 On-diagonal lower bounds 99
- 4.3 The Rozenblum-Lieb-Cwikel inequality 103
- 4.3.1 The Schrodinger operator [Delta]
- V 103
- 4.3.2 The operator T[subscript V] = [Delta superscript -1]V 105
- 4.3.3 The Birman-Schwinger principle 109
- 5 Parabolic Harnack inequalities 111
- 5.1 Scale-invariant Harnack principle 111
- 5.2 Local Sobolev inequalities 113
- 5.2.1 Local Sobolev inequalities and volume growth 113
- 5.2.2 Mean value inequalities for subsolutions 119
- 5.2.3 Localized heat kernel upper bounds 122
- 5.2.4 Time-derivative upper bounds 127
- 5.2.5 Mean value inequalities for supersolutions 128
- 5.3 Poincare inequalities 130
- 5.3.1 Poincare inequality and Sobolev inequality 131
- 5.3.2 Some weighted Poincare inequalities 133
- 5.3.3 Whitney-type coverings 135
- 5.3.4 A maximal inequality and an application 139
- 5.3.5 End of the proof of Theorem 5.3.4 141
- 5.4 Harnack inequalities and applications 143
- 5.4.1 An inequality for log u 143
- 5.4.2 Harnack inequality for positive supersolutions 145
- 5.4.3 Harnack inequalities for positive solutions 146
- 5.4.4 Holder continuity 149
- 5.4.5 Liouville theorems 151
- 5.4.6 Heat kernel lower bounds 152
- 5.4.7 Two-sided heat kernel bounds 154
- 5.5 The parabolic Harnack principle 155
- 5.5.1 Poincare, doubling, and Harnack 157
- 5.5.2 Stochastic completeness 161
- 5.5.3 Local Sobolev inequalities and the heat equation 164
- 5.5.4 Selected applications of Theorem 5.5.1 168
- 5.6.1 Unimodular Lie groups 172
- 5.6.2 Homogeneous spaces 175
- 5.6.3 Manifolds with Ricci curvature bounded below 176.