Bombay lectures on highest weight representations of infinite dimensional lie algebras /

Saved in:
Bibliographic Details
Author / Creator:Kac, Victor G., 1943- author.
Edition:Second edition.
Imprint:Hackensack, New Jersey : World Scientific, [2013]
©2014
Description:1 online resource (xii, 237 pages)
Language:English
Series:Advanced series in mathematical physics ; vol. 29
Advanced series in mathematical physics ; v. 29.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11202335
Hidden Bibliographic Details
Other authors / contributors:Raina, A. K., author.
Rozhkovskaya, Natasha, author.
ISBN:9789814522205
9814522201
9789814522182
981452218X
9789814522199
9814522198
Notes:Includes bibliographical references (pages 229-234) and index.
Print version record.
Summary:The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations. The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl 8 of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kas.
Other form:Print version: Kac, Victor G., 1943- Bombay lectures on highest weight representations of infinite dimensional lie algebras. Second edition. Hackensack, New Jersey : World Scientific, [2013] 9789814522182

MARC

LEADER 00000cam a2200000Ii 4500
001 11202335
005 20210426224035.9
006 m o d
007 cr mn|||||||||
008 130810t20132013nju ob 001 0 eng d
020 |a 9789814522205  |q (electronic bk.) 
020 |a 9814522201  |q (electronic bk.) 
020 |z 9789814522182  |q (hbk.) 
020 |z 981452218X  |q (hbk.) 
020 |z 9789814522199  |q (pbk.) 
020 |z 9814522198  |q (pbk.) 
035 |a (OCoLC)855505002 
035 9 |a (OCLCCM-CC)855505002 
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d OCLCO  |d IDEBK  |d N$T  |d STF  |d DEBSZ  |d ZCU  |d OSU  |d OCLCQ  |d GGVRL  |d YDXCP  |d OCLCQ  |d OCLCF  |d MYG  |d OCLCQ  |d AGLDB  |d LIP  |d MERUC  |d OCLCQ  |d U3W  |d VTS  |d ICG  |d INT  |d VT2  |d OCLCQ  |d WYU  |d OCLCQ  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d AJS 
049 |a MAIN 
050 4 |a QA252.3  |b .K33 2013eb 
072 7 |a SCI  |x 004000  |2 bisacsh 
100 1 |a Kac, Victor G.,  |d 1943-  |e author.  |0 http://id.loc.gov/authorities/names/n83153884 
245 1 0 |a Bombay lectures on highest weight representations of infinite dimensional lie algebras /  |c Victor G. Kac, Ashok K. Raina, Natasha Rozhkovskaya. 
250 |a Second edition. 
264 1 |a Hackensack, New Jersey :  |b World Scientific,  |c [2013] 
264 4 |c ©2014 
300 |a 1 online resource (xii, 237 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advanced series in mathematical physics ;  |v vol. 29 
520 |a The first edition of this book is a collection of a series of lectures given by Professor Victor Kac at the TIFR, Mumbai, India in December 1985 and January 1986. These lectures focus on the idea of a highest weight representation, which goes through four different incarnations. The first is the canonical commutation relations of the infinite dimensional Heisenberg Algebra (= oscillator algebra). The second is the highest weight representations of the Lie algebra gl 8 of infinite matrices, along with their applications to the theory of soliton equations, discovered by Sato and Date, Jimbo, Kas. 
504 |a Includes bibliographical references (pages 229-234) and index. 
505 0 |a Lecture 1. 1.1. The Lie algebra [symbol] of complex vector fields on the circle. 1.2. Representations V[symbol] of [symbol]. 1.3. Central extensions of [symbol]: the Virasoro algebra -- Lecture 2. 2.1. Definition of positive-energy representations of Vir. 2.2. Oscillator algebra [symbol]. 2.3. Oscillator representations of Vir -- Lecture 3. 3.1. Complete reducibility of the oscillator representations of Vir. 3.2. Highest weight representations of Vir. 3.3. Verma representations M(c, h) and irreducible highest weight representations V (c, h) of Vir. 3.4. More (unitary) oscillator representations of Vir -- Lecture 4. 4.1. Lie algebras of infinite matrices. 4.2. Infinite wedge space F and the Dirac positron theory. 4.3. Representations of GL[symbol] and gl[symbol] F. Unitarity of highest weight representations of gl[symbol]. 4.4. Representation of a[symbol] in F. 4.5. Representations of Vir in F -- Lecture 5. 5.1. Boson-fermion correspondence. 5.2. Wedging and contracting operators. 5.3. Vertex operators. The first part of the boson-fermion correspondence. 5.4. Vertex operator representations of gl[symbol] and a[symbol] -- Lecture 6. 6.1. Schur polynomials. 6.2. The second part of the boson-fermion correspondence. 6.3. An application: structure of the Virasoro representations for c = 1 -- Lecture 7. 7.1. Orbit of the vacuum vector under GL[symbol]. 7.2. Defining equations for [symbol] in F[symbol]. 7.3. Differential equations for [symbol] in [symbol]]. 7.4. Hirota's bilinear equations. 7.5. The KP hierarchy. 7.6. N-soliton solutions -- Lecture 8. 8.1. Degenerate representations and the determinant det[symbol](c, h) of the contravariant form. 8.2. The determinant det[symbol](c, h) as a polynomial in h. 8.3. The Kac determinant formula. 8.4. Some consequences of the determinant formula for unitarity and degeneracy -- Lecture 9. 9.1. Representations of loop algebras in ā[symbol]. 9.2. Representations of [symbol] in F[symbol]. 9.3. The invariant bilinear form on [symbol]. The action of [symbol] on [symbol]. 9.4. Reduction from a[symbol] to [symbol] and the unitarity of highest weight representations of [symbol]. 
505 8 |a Lecture 10. 10.1. Nonabelian generalization of Virasoro operators: the Sugawara construction. 10.2. The Goddard-Kent-Olive construction -- Lecture 11. 11.1. [symbol] and its Weyl group. 11.2. The Weyl-Kac character formula and Jacobi-Riemann theta functions. 11.3. A character identity -- Lecture 12. 12.1. Preliminaries on [symbol]. 12.2. A tensor product decomposition of some representations of [symbol]. 12.3. Construction and unitarity of the discrete series representations of Vir. 12.4. Completion of the proof of the Kac determinant formula. 12.5. On non-unitarity in the region 0 [symbol] 0 -- Lecture 13. 13.1. Formal distributions. 13.2. Local pairs of formal distributions. 13.3. Formal Fourier transform. 13.4. Lambda-bracket of local formal distributions -- Lecture 14. 14.1. Completion of U, restricted representations and quantum fields. 14.2. Normal ordered product -- Lecture 15. 15.1. Non-commutative Wick formula. 15.2. Virasoro formal distribution for free boson. 15.3. Virasoro formal distribution for neutral free fermions. 15.4. Virasoro formal distribution for charged free fermions -- Lecture 16. 16.1. Conformal weights. 16.2. Sugawara construction. 16.3. Bosonization of charged free fermions. 16.4. Irreducibility theorem for the charge decomposition. 16.5. An application: the Jacobi triple product identity. 16.6. Restricted representations of free fermions -- Lecture 17. 17.1. Definition of a vertex algebra. 17.2. Existence Theorem. 17.3. Examples of vertex algebras. 17.4. Uniqueness Theorem and n-th product identity. 17.5. Some constructions. 17.6. Energy-momentum fields. 17.7. Poisson like definition of a vertex algebra. 17.8. Borcherds identity -- Lecture 18. 18.1. Definition of a representation of a vertex algebra. 18.2. Representations of the universal vertex algebras. 18.3. On representations of simple vertex algebras. 18.4. On representations of simple affine vertex algebras. 18.5. The Zhu algebra method. 18.6. Twisted representations. 
588 0 |a Print version record. 
650 0 |a Infinite dimensional Lie algebras.  |0 http://id.loc.gov/authorities/subjects/sh91003307 
650 0 |a Quantum field theory.  |0 http://id.loc.gov/authorities/subjects/sh85109461 
650 7 |a SCIENCE  |x Astronomy.  |2 bisacsh 
650 7 |a Infinite dimensional Lie algebras.  |2 fast  |0 (OCoLC)fst00972423 
650 7 |a Quantum field theory.  |2 fast  |0 (OCoLC)fst01085105 
655 0 |a Electronic books. 
655 4 |a Electronic books. 
700 1 |a Raina, A. K.,  |e author.  |0 http://id.loc.gov/authorities/names/nr89011497 
700 1 |a Rozhkovskaya, Natasha,  |e author.  |0 http://id.loc.gov/authorities/names/no2013134712 
776 0 8 |i Print version:  |a Kac, Victor G., 1943-  |t Bombay lectures on highest weight representations of infinite dimensional lie algebras.  |b Second edition.  |d Hackensack, New Jersey : World Scientific, [2013]  |z 9789814522182  |w (DLC) 2013427978  |w (OCoLC)858312870 
830 0 |a Advanced series in mathematical physics ;  |v v. 29.  |0 http://id.loc.gov/authorities/names/n88508540 
903 |a HeVa 
929 |a oclccm 
999 f f |i 512a22e1-949b-5b09-b283-9d81553d8ebb  |s f354bdcb-2fcb-5848-980f-5d2ef0f17bbb 
928 |t Library of Congress classification  |a QA252.3 .K33 2013eb  |l Online  |c UC-FullText  |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=e000xna&AN=622047  |z eBooks on EBSCOhost  |g ebooks  |i 12394040