Risk assessment of power systems : models, methods, and applications /

Saved in:
Bibliographic Details
Author / Creator:Li, Wenyuan, 1946-
Edition:Second edition.
Imprint:Hoboken, New Jersey : IEEE Press, Wiley, 2014.
Description:1 online resource
Language:English
Series:Ieee press series on power engineering
IEEE Press series on power engineering.
Subject:
Format: E-Resource Book
URL for this record:http://pi.lib.uchicago.edu/1001/cat/bib/11204664
Hidden Bibliographic Details
ISBN:9781118843222
1118843223
9781118843352
1118843355
9781118849972
1118849973
1118686705
9781118686706
9781118686706
Notes:Includes bibliographical references and index.
Print version record and CIP data provided by publisher.
Summary:"Risk Assessment of Power Systems addresses the regulations and functions of risk assessment with regard to its relevance in system planning, maintenance, and asset management. Brimming with practical examples, this edition introduces the latest risk information on renewable resources, the smart grid, voltage stability assessment, and fuzzy risk evaluation. It is a comprehensive reference of a highly pertinent topic for engineers, managers, and upper-level students who seek examples of risk theory applications in the workplace"--
"This book discusses the models, methods and applications of risk assessment in physical power systems with a focus on various application problems"--
Other form:Print version: Li, Wenyuan, 1946- Risk assessment of power systems. Second edition. Hoboken, New Jersey : John Wiley & Sons Inc., 2014 9781118686706
Table of Contents:
  • IEEE Press; Title page; Copyright page; Dedication; Preface; Preface to the First Edition; 1: Introduction; 1.1 Risk in Power Systems; 1.2 Basic Concepts of Power System Risk Assessment; 1.3 Outline of the Book; 2: Outage Models of System Components; 2.1 Introduction; 2.2 Models of Independent Outages; 2.3 Models of Dependent Outages; 2.4 Conclusions; 3: Parameter Estimation in Outage Models; 3.1 Introduction; 3.2 Point Estimation on Mean and Variance of Failure Data; 3.3 Interval Estimation on Mean and Variance of Failure Data; 3.4 Estimating Failure Frequency of Individual Components.
  • 3.5 Estimating Probability from a Binomial Distribution3.6 Experimental Distribution of Failure Data and Its Test; 3.7 Estimating Parameters in Aging Failure Models; 3.8 Conclusions; 4: Elements of Risk Evaluation Methods; 4.1 Introduction; 4.2 Methods for Simple Systems; 4.3 Methods for Complex Systems; 4.4 Correlation Models in Risk Evaluation; 4.5 Conclusions; 5: Risk Evaluation Techniques for Power Systems; 5.1 Introduction; 5.2 Techniques Used in Generation-Demand Systems; 5.3 Techniques Used in Radial Distribution Systems; 5.4 Techniques Used in Substation Configurations.
  • 5.5 Techniques Used in Composite Generation and Transmission Systems5.6 Conclusions; 6: Application of Risk Evaluation to Transmission Development Planning; 6.1 Introduction; 6.2 Concept of Probabilistic Planning; 6.3 Risk Evaluation Approach; 6.4 Example 1: Selecting the Lowest-Cost Planning Alternative; 6.5 Example 2: Applying Different Planning Criteria; 6.6 Conclusions; 7: Application of Risk Evaluation to Transmission Operation Planning; 7.1 Introduction; 7.2 Concept of Risk Evaluation in Operation Planning; 7.3 Risk Evaluation Method.
  • 7.4 Example 1: Determining the Lowest-Risk Operation Mode7.5 Example 2: A Simple Case by Hand Calculation; 7.6 Conclusions; 8: Application of Risk Evaluation to Generation Source Planning; 8.1 Introduction; 8.2 Procedure of Reliability Planning; 8.3 Simulation of Generation and Risk Costs; 8.4 Example 1: Selecting Location and Size of Cogenerators; 8.5 Example 2: Making a Decision to Retire a Local Generation Plant; 8.6 Conclusions; 9: Application of Risk Evaluation to Selecting Substation Configurations; 9.1 Introduction; 9.2 Load Curtailment Model; 9.3 Risk Evaluation Approach.
  • 9.4 Example 1: Selecting Substation Configuration9.5 Example 2: Evaluating Effects of Substation Configuration Changes; 9.6 Example 3: Selecting Transmission Line Arrangement Associated with Substations; 9.7 Conclusions; 10: Application of Risk Evaluation to Renewable Energy Systems; 10.1 Introduction; 10.2 Risk Evaluation of Wind Turbine Power Converter System (WTPCS); 10.3 Risk Evaluation of Photovoltaic Power Systems; 10.4 Conclusions; 11: Application of Risk Evaluation to Composite Systems with Renewable Sources; 11.1 Introduction.